Linkage Between Biodegradation of Polycyclic Aromatic Hydrocarbons and Phospholipid Profiles in Soil Isolates

  • Nam, Kyoung-Phile (School of Civil, Urban & Geosystem Engineering, Seoul National University) ;
  • Moon, Hee-Sun (School of Civil, Urban & Geosystem Engineering, Seoul National University) ;
  • Kim, Jae-Young (School of Civil, Urban & Geosystem Engineering, Seoul National University) ;
  • Kukor, Jerome-J. (Biotechnology Center for Agriculture and the Environment, Rutgers University)
  • Published : 2002.02.01

Abstract

A bacterial consortium capable of utilizing a variety of polycyclic aromatic hydrocarbons has been isolated from a former manufactured gas plant site. The consortium consisted of four members including Arthrobacter sp., Burkholderia sp., Ochrobacterium sp., and Alcaligenes sp., which were identified and characterized by the patterns of fatty acid methyl esters (FAME analysis) and carbon source utilization (BIOLOG system). With the individual members, the biodegradation characteristics of aromatic hydrocarbons depending on different growth substrates were determined. FAME analyses demonstrated that microbial fatty acid profiles changed to significant extents in response to different carbon sources, and hence, such shift profiles may be informative to characterize the biodegradation potential of a bacterium or microbial community.

Keywords

References

  1. Science v.211 Biodegradation of chemicals of environmental concern Alexander, M.
  2. Environ. Sci. Tehnol. v.29 How toxic are toxic chemicals in soil? Alexander, M. https://doi.org/10.1021/es00001a001
  3. Org. Geochem. v.32 Effects of petroleum hydrocarbons on the phospholipid fatty acid composition of a consortium composed of marine hydrocarbon-degrading bacteria Aries, E.;P. Doumenq;J. Artaud;M. Acquaviva;J. C. Bertrand https://doi.org/10.1016/S0146-6380(01)00052-3
  4. Nature v.392 Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers Boschker, H. T. S.;S. C. Nold;P. Wellsbury;D. Bos;W. de Grrf;R. Pel;R. J. Parkes;T. E. Cappenberg https://doi.org/10.1038/33900
  5. Appl. Environ. Microbiol. v.63 New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101 Casellas, M.;M. Grifoll;J. M. Bayona;A. M. Solanas
  6. Ph.D Dissertation Molecular Analysis of Polycyclic Aromatic Hydrocarbon Degradation by Mycobacterium sp. strain PYOl Cigolini, J. F.
  7. Appl. Environ. Microbiol. v.58 Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase(organic-aqueous) medium Cruden, D. L.;H. Wolfram;R. D. Rogers;D. T. Gibson
  8. J. Bacteriol. v.94 Effect of substrate on the fatty acid composition of hydrocarbon-utilizing microorganisms Dunlap, K. R.;J. J. Perry
  9. FEMS Microbiol. Ecol. v.31 Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of esturine sediments Guckert, J. B.;C. P. Antworth;P. D. Nichols;D. C. White https://doi.org/10.1111/j.1574-6968.1985.tb01143.x
  10. J. Gen. Microbiol. v.137 Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the proteobacteria Guckert, J. B.;D. B. Ringelberg;D. C. White;R. S. Hanson;B. J. Bratina https://doi.org/10.1099/00221287-137-11-2631
  11. Appl. Environ. Microbiol. v.60 Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities Haack, S. K.;H. Garchow;D. A. Odelson;L. J. Forney;M. J. Klug
  12. Appl. Environ. Microbiol. v.65 Linking toluene degradation with specific microbial populations in soil Hanson, J. R.;J. L. Macalady;D. Harris;K. M. Scow
  13. Appl. Environ. Microbiol. v.65 Involvement of two plasmids in the degradation of carbaryl by Arthrobacter sp. strain RC100 Hayatsu, M.;M. Hirano;T. Nagata
  14. Trends Biotechnol. v.12 Mechanisms of resistance of whole cells to toxic organic solvents Heipiper, H. J.;F. J. Weber;J. Sikkema;H. Kexeloh;J. A. M. de Bont https://doi.org/10.1016/0167-7799(94)90029-9
  15. Nature v.338 A Pseudomonas thrives in high concentrations of toluene Inoue, A.;K. Horikoshi https://doi.org/10.1038/338264a0
  16. J. Microbiol. Biotechnol. v.10 Physiological and phylogenetic analysis of Burkholderia sp. HY1 capable of aniline degradation Kahng, H.-Y.;J. J. kukor;K.-H. Oh
  17. J. Bacteriol. v.181 The phn genes of Burkholderia sp. strain RP001 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism Laurie, A. D.;G. Lloyd-Jones
  18. Environ. Sci. Technol. v.29 Equilibrium partitioning of polycyclic aromatic hydrocarbons from coal tar to water Lee, L. S.;P. S. C. Rao;I. Okuda
  19. J. Bacteriol. v.95 Microbial assimilation of hydrocarbons. Ⅰ. Fatty acids derived from normal alkanes Makula, R. A.;W. R. Finnerty
  20. Chemosphere v.45 Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction Nam, K.;W. Rodriguez;J. J. Kukor https://doi.org/10.1016/S0045-6535(01)00051-0
  21. J. Ferment. Bioeng. v.82 Biodegradation of organophophorous insecticides by bacteria isolated from turf green soil Ohshiro, K.;T. Kakuta;T. Sakai;H. Hirota;T. Hoshino;T. Uchiyama https://doi.org/10.1016/0922-338X(96)88823-4
  22. Appl. Environ. Microbiol. v.62 Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGⅡ-135, isolated from a former coal gasification site Schneider, J.;R. Grosser;K. Jayasimhulu;W. Xue;D. Warshasky
  23. Agric. Biol. Chem. v.55 Isolation of toluene-resistant mutants from Pseudomonas putida PpGl(ATCC 17453) Shima, Ⅱ;T. Kudo;K. Korikoshi https://doi.org/10.1271/bbb1961.55.1197
  24. J. Bacteriol. v.174 Effects of membrane action of tetralin on the functional and structural properties of artificial and bacterial membranes Sikkema, J.;B. Poolman;W. N. Konings;J. A. M. de Bont https://doi.org/10.1128/jb.174.9.2986-2992.1992
  25. J. Biol. Chem. v.269 Interactions of cyclic hydrocarbons with biological membranes Sikkema, J.;J. A. M. de Bont;B. Poolman
  26. Microbiol. Rev. v.59 Mechanisms of membrane toxicity of hydrocarbons Sikkema, J.;J. A. M. de Bont;B. Poolman
  27. Residues Rev. v.88 Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems Sims, R. C.;M. R. Overcash
  28. Biodegradation v.6 Microbial dehalogenation Slater, J. H.;A. T. Bull;D. J. Hardman https://doi.org/10.1007/BF00700456
  29. Handbook on Biodegradation and Biological Treatment of Harzardous Organic Compounds van Agteren, M. H.;S. Keuning;D. B. Janssen
  30. Appl. Environ. Microbiol. v.59 Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents Weber, F. J.;L. P. Ooykaas;R. M. W. Schemen;S. Hartmans;J. A. M. de Bont
  31. Ann. NY Acad. Sci. v.721 Cloning and analysis of the genes for polycyclic aromatic hydrocarbon degradation Zylstra, G. J.;X. P. Wang;E. Kim;V. A. Didolkar https://doi.org/10.1111/j.1749-6632.1994.tb47410.x