Fabrication and Characteristics of Lateral Type Field Emitter Arrays

  • Lee, Jae-Hoon (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Kwon, Ki-Rock (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Lee, Myoung-Bok (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Hahm, Sung-Ho (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Park, Kyu-Man (Reseach Institute of Electronic and Telecommunication Technologies, Kwandong University) ;
  • Lee, Jung-Hee (School of Electronic and Electrical Engineering, Kyungpook National University)
  • 발행 : 2002.06.01

초록

We have proposed and fabricated two lateral type field emission diodes, poly-Si emitter by utilizing the local oxidation of silicon (LOCOS) and GaN emitter using metal organic chemical vapor deposition (MOCVD) process. The fabricated poly-Si diode exhibited excellent electrical characteristics such as a very low turn-on voltage of 2 V and a high emission current of $300{\;}\bu\textrm{A}/tip$ at the anode-to-cathode voltage of 25 V. These superior field emission characteristics was speculated as a result of strong surface modification inducing a quasi-negative electron affinity and the increase of emitting sites due to local sharp protrusions by an appropriate activation treatment. In respect, two kinds of procedures were proposed for the fabrication of the lateral type GaN emitter: a selective etching method with electron cyclotron resonance-reactive ion etching (ECR-RIE) or a simple selective growth by utilizing $Si_3N_4$ film as a masking layer. The fabricated device using the ECR-RIE exhibited electrical characteristics such as a turn-on voltage of 35 V for $7\bu\textrm{m}$ gap and an emission current of~580 nA/l0tips at anode-to-cathode voltage of 100 V. These new field emission characteristics of GaN tips are believed to be due to a low electron affinity as well as the shorter inter-electrode distance. Compared to lateral type GaN field emission diode using ECR-RIE, re-grown GaN emitters shows sharper shape tips and shorter inter-electrode distance.

키워드

참고문헌

  1. I. Brodie and C. A. Spindt, Adv. Electron. Phys, vol. 83, 1 (1992) https://doi.org/10.1002/9780470141410.ch1
  2. J. A. Oro and D. D. Ball, lateral field-emission devices with subtenth-micron emitter to anode spacing, J. Vac. Sci. Technol. B, 11, 2, 464 (1993) https://doi.org/10.1116/1.586841
  3. C. A. Spindt, I. Brodie, L. Humphrey and E. R. Westenberg, J. Appl. Phys. 47, 5248 (1967) https://doi.org/10.1063/1.322600
  4. V. V. Zhinov, E. I. Givarfizov, and P. S. Plekhanov, J. Vac. Sic. Technol. B 13, 418 (1995) https://doi.org/10.1116/1.587960
  5. T. Utsumi, IEEE Trans. Elec. Dev., 38, 2276 (1991) https://doi.org/10.1109/16.88510
  6. D. Temple, W. D. Palmer, L. N. Yadon, J. E. Mancusi, D. Vellenga, and G. E. McGuire, J. Vac. Sci. Technol. A, 16, 1980 (1998) https://doi.org/10.1116/1.581207
  7. S. Albin, W. Fu, A. Varghese, and A. C. Lavarias, J. Vac. Sci. Technol. A, 17, 2104 (1999) https://doi.org/10.1116/1.581733
  8. X. D. Bai, J. D. Guo, Jie Yu, and E. G. Wang, Jun Yuan and Wuzong Zhou, Appl. Phys. Lett., 76, 2624 (2000) https://doi.org/10.1063/1.126429
  9. R. D. Underwood, D. Kapolnerek, B. P. Keller, S. Keller, S. P. Denbaars, and U. K. Mishra, Solid-State Electronics, 41, 2, 243 (1997) https://doi.org/10.1016/S0038-1101(96)00209-2
  10. Tsvetanka S. Zheleva, Ok-hyun Nam, Michael D. Bremser, and Robert F. Davis, Appl. Phys. Lett., 71, 27, 2471 (1997) https://doi.org/10.1063/1.120091
  11. W. Czarczynski, St. Lasisz, M. Moraw, R. Paszkiewicz, M. Tlaczala, Z. Znamirowski, Applied Surface Science, 151, 63 (1999) https://doi.org/10.1016/S0169-4332(99)00258-5
  12. T. Kozawa, T. Ohwaki, Y. Taga, and N. Sawaki, Appl. Phys. Lett., 75, 21, 3330 (1999) https://doi.org/10.1063/1.125341
  13. J. A. Oro and D. D. Ball, J. Vac. Sci. Technol. B 11, 464 (1993) https://doi.org/10.1116/1.586841
  14. Y. Y. Lau, Y. Liu, and R. K. Parker, Phys. Plasmas, 1, 2082 (1994) https://doi.org/10.1063/1.870603
  15. G. N. A. van Veen, J. Vac, Sci. Technol. B, 12, 655 (1994) https://doi.org/10.1116/1.587407
  16. J. D. Lee, S. H. Jin, B. C. Shim, and B. G. Park, IEEE Device Lett, 22, 173 (2001) https://doi.org/10.1109/55.915603
  17. J. H. Lee, M. B. Lee, S. H. Hahm, H. C. Choi, J. H. Lee, and J. H. Lee, J. Vac. Sic. Technol. B, 19, 1055 (2001) https://doi.org/10.1116/1.1371017
  18. I. Brodie and P. R. Schwoebel, Proc. IEEE, 82, 1006 (1994) https://doi.org/10.1109/5.293159
  19. S. S. Park, D. I. Park, S. H Hahm, J. H. Lee, H. C. Choi, and J. H.. Lee, IEEE Trans. Elec. Dev. 46, 1283 (1999) https://doi.org/10.1109/16.766899
  20. F. M. Charbonnier, W.A Mackie, and R. L. Harman, In Proc. Int. Vacuum Electron Devices, 48, 149 (2000)