효소 저해법을 이용한 유기인계 및 Carbamate계 농약의 다성분 잔류 검출

Detection for Multiresidue of the Organophosphorus and Carbamate Pesticides by Enzyme-Inhibition Method

  • 발행 : 2002.09.01

초록

Enzyme-Inhibition방법으로 다성분 잔류 농약의 검출 기법을 개발하기 위해, 음용수 허용기준 설정 농약인 유기인계 농약으로 malathion, parathion, diazinon과 carbamate농약으로 carbary에 대한 acetylcholinesterase (AChE)과 cholinesterase (ChE) 활성저해 관계를 규명하였다. 병아리 뇌의 AChE와 ChE 활성도는 각각 166.6 및 5.8$\mu$mol/min/g protein이었고, 혈장에서는 각각 23.1$\mu$mol/min/g protein과 8.3 $\mu$mol/min/g protein 이었다. AChE와 ChE의 최적 PH는 각각 8.2및 7.8 이었다. Km은 0.034 및 0.045 mM 이었다. 유기인계농약에서 AChE와 ChE의 I$_{50}$ 값의 malathion이 55.82 및 99.42mg/L이었고, Parathion은 31.16및 29.13mg/L이었고, diazinon은 17.89 및 19.62 mg/L 이었다. Carbamate농약인 carbaryl의 AChE와 ChE의 I$_{50}$ 값의 0.10및 0.05mg/L이었다. 먹는 물 관리법에 의한 carbaryl의 먹는 물 허용 수질기준인 0.07mg /L을 AChE와 ChE의 I$_{50}$에서 검출할 수 있다. AChE및 ChE을 이용한 enzyme-inhibition(EI)법은 carbamate농약인 carbaryl을 먹는 물 허용 수질기준인 0.07mg/L가지 검출 할 수 있으므로, 다성분 잔류분석법 (MRM, Multiresidue Method)으로 이용할 수 있다. 따라서 Enzyme lnhibition방법을 이용하여 자연환경 중 carbamate계 농약을 쉽고 빠르게 검출할 수 있는 새로운 bioassay법으로 응용할 수 있다. 수 있다.

This study was carried out with the detection for multiresidue of the organophosphorus pesticides such as malathion, parathion. diazinon, and carbamate pesticide such as carbaryl, by enzyme-inhibition method. The acetylcholinesterase (AChE) and cholinesterase (ChE) activities in chicken brain determined by the Ellman's method were 166.6 and 5.8 $\mu$mol/min/g protein, and in chicken plasma were 23.1 and 8.3 $\mu$mol/min/g protein, respectively. The optimum pH of AChE and ChE was 8.2 and 7.8, respectively. The Km of AChE and ChE was 0.034 and 0.045 mM, respectively. I$\_$50/ for AChE and ChE by some organophosphorus was 55.82 and 99.42 mg/L of malathion, 31.16 and 29.13 mg/L of parathion, and 17.89 and 19.62 mg/L of diazinon, respectively. I$\_$50/ for AChE and ChE by carbaryl of carbamate was 0.10 and 0.05 mg/L, respectively. The 0.07 mg/L of drinking water advisory level for carbaryl could be detected with I$\_$50/ of AChE and ChE. Enzyme-Inhibition (EI) method with AChE and ChE was used the multiresidue method to detect the 1 mg/L of the carbamate pesticides.

키워드

참고문헌

  1. 유홍일, 이해근, 전성환, 농약잔류 분석방법, 동화기술 1991
  2. 정영호, 박영선, 농약학, 전국농업기술자협회, 문선사 1990
  3. 환경부, http://nkkfem.or.kr/sub3/먹는물기준.htm. 2002
  4. Abad, J.M., Pariente, F., Hernandez, L., Abruna, H.D., and Lorenzo, E. Determination of organophosphorus and carbamate pesticides using piezoelectric biosensors. Analytical Chemistry 1998; 70 : 2848-2855 https://doi.org/10.1021/ac971374m
  5. Albareda-Sirvent M., Merkoci A., and Alegret S. Pesticide determination in tap water and juice samples using disposable amperometric biosensors made using thick-film technology. Analytica Chimica Acta 2001; 442:35-44 https://doi.org/10.1016/S0003-2670(01)01017-0
  6. Aprea C., Colosio c., Mammone T., Minoia C., and Maronib M. Biological monitoring of pesticide exposure: a review of analytical methods. J. Chromatogr. 2002; B769 : 191-219 https://doi.org/10.1016/S1570-0232(02)00044-2
  7. Bachmann, T.T., Leca, B., Villatte, F., Marty, J.-L., Fournier, D., and Schmid, R.D. Improved multianalyte detection of organophosphates and carbamates with disposable multiresidue biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural networks. Biosensors and Bioelectronics 2000; 15 : 193-201 https://doi.org/10.1016/S0956-5663(00)00055-5
  8. Bachmann, T.T., and Schmid, R.D. A disposable, multielectrode biosensor for rapid simultaneous detection of the insecticides paraoxon and carbofuran at high resolution. Analytica Chimica Acta 1999; 401 : 95-103 https://doi.org/10.1016/S0003-2670(99)00513-9
  9. Bergmeyer, H.H. Methods of enzymatic analysis, 3nd ed., Vol. IV, Verlagchemie. 1984; 52-74
  10. Collier W.A., Clear M., and Hart A.L. Convenient and rapid detection of pesticides in extracts of sheep wool. Biosensors and Bioelectronics 2002; 17: 815-819 https://doi.org/10.1016/S0956-5663(02)00074-X
  11. Dzyadevych S.V., and Chovelon J.-M. A comparative photodegradation studies of methyl parathion by using lumistox test and conductometric biosensor technique. Materials and Engineering. 2002; C21 : 55-60 https://doi.org/10.1016/S0928-4931(02)00058-9
  12. Dzyadevych S.V., Soldatkin A.P., and Chovelon J.-M. Assessment of the toxicity of methyl parathion and its photodegradation products in water samples using conductometric enzyme biosensors. Analytica Chimica Acta 2002; 459: 33-41 https://doi.org/10.1016/S0003-2670(02)00083-1
  13. Ellman, G.L., Courtney K.D., Andres Jr.V., and Featherstone R.M. A new and rapid calorimetric determination of acetycholinesterase activity. Biochem. Pharmacol. 1961; 7: 88-95 https://doi.org/10.1016/0006-2952(61)90145-9
  14. Eto. M., Organophosphorus pesticides-organic and biological Chemistry, CRC. 1974
  15. Evtugyn, G.A., Budnikov, H.C., and Nikolskaya, E.B. Influence of surface-active compounds on the response and sensitivity of cholinesterase biosensors for inhibitor determination. Analyst 1996; 121 : 1911-1915 https://doi.org/10.1039/an9962101911
  16. Ghindilis, A.L., Morzunova, H.C., Barmin, A.V., and Kurochkin, I.N. Potentiometric biosensors for cholinesterase inhibitor analysis based on mediatorless bioelctrocatalysis. Biosensors and Bioelectronics 1996; 11 : 837-880
  17. Gulla K.C., Gouda M.D., Thakur M.S., and Karanth N.G. Reactivation of immobilized acetyl cholinesterase in an amperometric biosensor for organophosphorus pesticide. Biochimica et Biophysica Acta 2002; 1597 : 133-139 https://doi.org/10.1016/S0167-4838(02)00268-6
  18. Ivanov A.N., Lukachova L.V., Evtugyn G.A., Karyakina E.E., Kiseleva, S.G. Budnikov H.C., Orlovc A.V, Karpacheva G.P., and Karyakin A.A. Polyaniline-modified cholinesterase sensor for pesticide determination. Bioelectrochem. 2002; 55: 75-77 https://doi.org/10.1016/S1567-5394(01)00163-3
  19. Kuhr, R.J., Carbamate insecticides; chemistry, biochemistry, and toxicology, CRC, Ohio. 1977
  20. Lowry, O.H., Roesbrough N.J., Favr A.L and R.J., Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem. 1951; 193: 265-275
  21. Matsumura, F., Toxicology of insecticides, Plenum Press, New York. 1975; 105-164
  22. Mionetto, N., Marty, J.L., and Karubc, I. Acetylcholinesterase in organic solvents for the detection of pesticides: biosensor application. Biosensors and Bioelectronics 1994; 9 : 463-470 https://doi.org/10.1016/0956-5663(94)90035-3
  23. Reybier K., Zairi S., Jaffrezic-Renault N., and Fahys B. The use of polyethyleneimine for fabrication of potentiometric cholinesterase biosensors. Talanta 2002; 56 : 1015-1020 https://doi.org/10.1016/S0039-9140(01)00588-4
  24. Saul, J.S., Zomer, E., Puopolo, D., Charm, S.E. Use of a new rapid bioluminescence method for screening organophosphate and N-methylcarbamate insecticides in processed baby food. J. Food Protection 1995; 59 : 303-311
  25. Stryer L. Biochemistry. 2nd ed. Freeman & Com. USA. 1981; 103-134
  26. Tomlin C., The pesticide manual, 12th ed., British crop protection council, United Kingdom. 2000
  27. Varo I., Navarro J.C., Amat F., and Guilhermino L. Characterisation of cholinesterases and evaluation of the inhibitory potential of chlorpyrifos and dichlorvos to artemia salina and artemia parthenogenetica. Chemosphere 2002 ; 48: 563-569 https://doi.org/10.1016/S0045-6535(02)00075-9