Sensitivity Analysis for a Level-III Multimedia Environmental Model: A Case Study for 2, 3, 7, 8-TCDD in Seoul

다매체환경거동모형 (level-III)의 민감도분석기법: 서울지역의 2, 3, 7, 8-TCDD 사례연구

  • Kwon, Jung-Hwan (Environmental Chemistry Laboratory, Korea Institute of Toxicology) ;
  • Lee, Dong-Soo (Graduate School of Environmental Studies, Seoul National University)
  • Published : 2002.09.01

Abstract

유해물질의 거동에 대한 이해를 돕기 위해서 대도시지역을 대상으로 하여 fugacity를 이용한 level-III 다매체환경거동모형이 개발되었다. 이 모형에 의한 거동의 예측결과에 민감한 영향을 주는 입력과정과 변수들을 찾아내기 위하여 체계적으로 민감도분석을 수행할 수 있도록 하는 기법을 개발하고 사례연구로서 서울지역과 2, 3, 7, 8-TCDD을 대상으로 그 기법을 적용하였다. Sensitivity index에 의한 평가한 결과, 일정한 배출속도조건에서는 대기중의 바람속도, 그리고 대기에서 수체나 토양으로 전이되는 건식 및 습식 침적과정이 다매체거동에서 전체적으로 가장 중요한 과정인 것으로 나타났다. 또한 이들 거동과정 자체에 영향을 미치는 변수들에 대한 민감도 분석의 결과 건식침적의 경우 중력에 의한 입자들의 침강속도가, 습식침적의 경우 평균 강우속도가 대단히 중요한 변수임이 파악되었다. 물질의 물리화학적 특성 가운데에서는 z-값에 직접 영향을 주는 변수들, 즉, 헨리상수와 옥타놀-물 분배계수 등이 결과에 민감한 영향을 주는 것으로 나타났다. 이러한 사례연구는 본 연구에서 개발된 민감도분석기법이 유해물질의 다매체 거동모형을 개선하고 좀더 중요한 거동과정에 대한 이해를 넓히는데 효율적으로 사용될 수 있다는 것을 보여주고 있다.

Keywords

References

  1. Atkinson, R. Estimation of OH radical reaction rate constants and atmospheric lifetimes for polychlobiphenyls, dibenzo-p-dioxins, and dibenzofurans. Environ. Sci. Technol. 1987; 21:305-307 https://doi.org/10.1021/es00157a013
  2. Chrostowski, P.C, Foster, S.A. A methodology for assessing congener-specific partitioning and plant uptake of dioxins and dioxin -like compounds. Chemosphere 1996; 32:2285-2304 https://doi.org/10.1016/0045-6535(96)00118-X
  3. Cohen, Y. Intermedia transport modeling in multimedia systems, In Pollutants in a Multimedia Environment. 1986, Y. Cohen eds. Plenum Press, NY, USA
  4. Cohen, Y, Ryan, P.A. Multimedia modeling of environmental transport: trichloroethylene test case. Environ. Sci. Technol. 1985; 19:412-417 https://doi.org/10.1021/es00135a004
  5. DevilIers, J., Bintein, S., Karcher, W. CHEMFRANCE: A regional level III fugacity model applied to France. Chemosphere 1996; 30:457-476 https://doi.org/10.1016/0045-6535(94)00425-T
  6. Diamond, M.L., Priemer, D.A., Law, N.L. Developing a multimedia model of chemical dynamics in an urban area. Chemosphere 2001; 44:1655-1667 https://doi.org/10.1016/S0045-6535(00)00509-9
  7. Eitzer, B.D., Hites, R.A. Vapor pressure of chlorinated dioxins and dibenzofurans. Environ. Sci. Technol. 1988; 22:1362-1364 https://doi.org/10.1021/es00176a018
  8. Friesen, KJ., Webster, G.R.B. Temperature dependence of the aqueous solubilities of highly chlorinated dibenzop-dioxins. Environ. Sci. Technol. 1990; 24:97-101 https://doi.org/10.1021/es00071a011
  9. Friesen, KJ., Foga, M.M., Loewen, M.D. Aquatic photodegradation of polychlorinated dibenzofurans: rate and photoproduct analysis. Environ. Sci. Technol. 1996; 30: 2504-2510 https://doi.org/10.1021/es9508277
  10. Kiely, G. Environmental Engineering. 1996, McGraw-Hill, New York
  11. Korea Meterological Administration, 1992-1997, Yearly Weather Report
  12. Koester, C.J., Hites, R.A. Photodegradation of polychlorinated dioxins and dibenzofurans adsorbed to fly ash. Environ. Sci. Technol. 1992; 26:502-507 https://doi.org/10.1021/es00027a008
  13. Kwok, E.S.C., Arey, J., Atkinson, R. Gas-phase atmospheric chemistry of dibenzo-p-dioxin and dibenzofuran. Environ. Sci. Technol. 1994; 28:528-533 https://doi.org/10.1021/es00052a028
  14. Kwok, E.S.C., Atkinson, R., Arey, J. Rate constant for the gas-phase reaction of the OH radical with diehiorobiphenyls, 1-chlorodibenzo-p-dioxin, 1, 2-dimethoxybenzene, and diphenyl ether: estimation of OH radical reaction rate constants for PCBs, PCDDs, and PCDFs. Environ. Sci. Technol. 1995; 29:1591-1598 https://doi.org/10.1021/es00006a024
  15. Kwon, J-H. Multimedia fate modeling of PCDD/Fs in Seoul metropolitan area. 1998, Master.s thesis, Seoul National University
  16. Mackay, D. Finding fugacity feasible. Environ. Sci. Technol. 1979; 13:1218-1223 https://doi.org/10.1021/es60158a003
  17. Mackay, D. Multimedia Environmental Model: The Fugacity Approach. 1991, Lewis Publisher, Chelsea, MI, USA
  18. Mackay, D., Paterson, S. Calculating fugacity. Environ. Sci. Technol. 1981; 15:1006-1014 https://doi.org/10.1021/es00091a001
  19. Mackay, D., Paterson, S. Fugacity revisited. Environ. Sci. Technol. 1982; 16:654A-660A https://doi.org/10.1021/es00106a001
  20. Mackay, D., Paterson, S. Evaluating the multimedia fate of organic chemicals: a level III fugacity mode!. Environ. Sci. Technol. 1991; 25:427-436 https://doi.org/10.1021/es00015a008
  21. Mackay, D., Shiu, W. Y., Ma, K. C. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals Vol II Polynuclear Aromatic Hydrocarbons, Polychlorinated Dioxins, and Dibenzofurans. 1992, Lewis Publishers, Chelsea, MI, USA
  22. Mackay, D., Di Guardo, A., Paterson, S., Cowan, C.E. Evaluating the environmental fate of a variety of types of chemicals using the EQC model. Environ. Toxicol. Chem. 1996; 15:1627-1637
  23. McCrady, J.K., Maggard, S.P. Uptake and photodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin sorbed to grass foliage. Environ. Sci. Technol. 1993; 27:343-350 https://doi.org/10.1021/es00039a015
  24. Ministry of Construction and Transportation. Measurement of water flux in the watershed of Han river. 1996a, Han River Flood Control Office (in Korean)
  25. Ministry of Construction and Transportation. Hydrological Annual Report. 1996b (In Korean)
  26. Ministry of Environment. Environmental Report. 1992-1996 (In Korean)
  27. Ministry of Environment. Environmental Statistics Yearbook. 1996 (In Korean)
  28. Oh, J-E., Lee, K-T., Lee, J-W., Chang, Y-S. The evaluation of PCDD/Fs from various Korean incinerators. Chemosphere 1999; 38:2097-2108 https://doi.org/10.1016/S0045-6535(98)00419-6
  29. Pennise, D.M., Kamens, R.M. Atmospheric behavior of polychlorinated dibenzo-p-dioxins and dibenzofurans and the effect of combustion temperature. Environ. Sci. Technol. 1996; 30:2832-2842 https://doi.org/10.1021/es960112j
  30. Rordorf, B.F. Prediction of vapor pressures, boiling points and enthalpies of fusion for twenty-nine halogenated dibenzo-p-dioxins and fifty-five dibenzofurans by a vapor pressure correlation method. Chemosphere 1989; 15:1325-1332
  31. Shiu, W.Y., Doucette, W., Gobas, F.A.P.C., Andren, A., Mackay, D. Physical-chemical properties of chlorinated dibenzo-p-dioxins. Environ. Sci. Technol. 1988; 22: 651-658 https://doi.org/10.1021/es00171a006
  32. Suzuki, N., Yasuda, M., Sakurai, T., Nakanishi, J. Simulation of long-term environmental dynamics of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans using the dynamic multimedia environmental fate model and its implication to the time trend analysis of dioxins. Chemosphere 2000; 40:969-976 https://doi.org/10.1016/S0045-6535(99)00341-0
  33. Thomas, V.M., Spiro, T.S. An estimation of dioxin emissions in the United States. Toxicol. Environ. Chem.1995; 50:1-37 https://doi.org/10.1080/02772249509358202
  34. Trapp, S., Matthies, M. Generic one-compartment model for uptake of organic chemicals by foliar vegetation. Environ. Sci. Technol. 1995; 29:2333-2338 https://doi.org/10.1021/es00009a027
  35. Traxler, R.N. Asphalt: Its Composition, Properties and Uses. 1961, Reinhold Publishing, NY, USA
  36. Van de Meent, D. and de Bruijn, J.H.M. A modeling procedure to evaluate the coherence of independently derived environmental quality objectives for air, water and soil. Environ. Toxicol. Chem. 1995; 14:177-186 https://doi.org/10.1897/1552-8618(1995)14[177:AMPTET]2.0.CO;2