DOI QR코드

DOI QR Code

확장된 Interactive Hashing 프로토콜

Extended Interactive Hashing Protocol

  • 홍도원 (한국전자통신연구원 정보보호연구본부) ;
  • 장구영 (한국전자통신연구원 정보보호연구본부) ;
  • 류희수 (한국전자통신연구원 정보보호연구본부)
  • 발행 : 2002.06.01

초록

Interactive hashing은 Naor, Ostrovsky, Venkatesan, Yung〔1〕에 의해 소개된 프로토콜로 주어진 스트링 크기 t비트에 대해 t-1번의 라운드 복잡도(round complexity)와 $t^2$-1 비트의 전송 복잡도(communication complexity)를 가진다. 본 논문은 t를 나누는 m에 대해서 t/m-1번의 라운드 복잡도와 $t^2$/m - m 비트의 전송 복잡도를 갖는 NOVY 프로토콜보다 효율적으로 확장된 Interactive hashing 프로토콜을 제안하고 그 안전성을 증명한다.

Interactive hashing is a protocol introduced by Naor, Ostrovsk Venkatesan, $Yung^{[1]}$ with t-1 round complexity and $t^2$ - 1 bits communication complexity for given t bits string. In this paper, we propose more efficiently extended interactive hashing protocol with t/m- 1 round complexity and $t^2$/m - m bits communication complexity than NOVY protocol when m is a divisor of t, and prove the security of this.

키워드

참고문헌

  1. M. Naor, R. Ostrovsky. R. Venkatesan. and M. Yung, 'Perfect sero-knowledge arguments for NP using any one-way function', Journal of Cryptology, 11(2), pp. 87-108, 1998. Preliminary version presented at CRYPTO '92
  2. I. Damg$\aa$rd, 'Interactive hashing can simplify zero-knowledge protocol design without computational assumtions', In Advances in Cryptology - CRYPTO '93, pp. 100-109, 1993
  3. I. Damg$\aa$rd and R. Cramer, 'On monotone function closure of perfect and statistical zero-knowledge', CWI technical report, CS-R9618. May 1996
  4. R. Ostrovsky, R. Venkatesan, and M. Yung, 'Fair games against an all-powerful adversary', SEQUENCES '91, Positano, 1991
  5. R. Ostrovsky, R. Venkatesan, and M. Yung, 'Interactive hashing simplifies zero-knowledge protocol design', In Advances in Cryptology - EUROCYRPTO '93. pp. 267-273. 1993
  6. C. Cachin, C. Crepeau, and J. Marcil, 'Oblivious tranfser with a memory-bounded receiver', In Proc. 39th IEEE Symposium in Foundations of Computer Science. pp. 493-502, 1998
  7. Y. Z. Ding, 'Oblivious Transfer in the Bounded Storage Model', In Advances in Cryptology - CRYPTO 2001, pp. 155-170, 2001
  8. D. R. Stinson, 'Universal hash families and the leftover hash lemma, and appli-cations to cryptography and computing', 2002
  9. J. L. Carter and M. N. Wegman, 'Universal classes of hash functions', Journal of Computer and System Sciences 18, pp. 143-154, 1979 https://doi.org/10.1016/0022-0000(79)90044-8
  10. D. R. Stinson, 'Qn the connections between universal hasing, combinatorial designs and error-correcting codes', Congressus Numerantium 114, pp. y-27, 1996