DOI QR코드

DOI QR Code

Cellular Automata based on VLSI architecture over GF($2^m$)

GF($2^m$)상의 셀룰라 오토마타를 이용한 VLSI 구조

  • 전준철 (경북대학교 컴퓨터공학과 정보보호연구실) ;
  • 김현성 (경일대학교 컴퓨터공학과) ;
  • 이형목 (경북대학교 컴퓨터공학과 정보보호연구실) ;
  • 유기영 (경북대학교 컴퓨터공학과 정보보호연구실)
  • Published : 2002.06.01

Abstract

This study presents an MSB(Most Significant Bit) Int multiplier using cellular automata, along with a new MSB first multiplication algorithm over GF($2^m$). The proposed architecture has the advantage of high regularity and a reduced latency based on combining the characteristics of a PBCA(Periodic Boundary Cellular Automata) and with the property of irreducible AOP(All One Polynomial). The proposed multiplier can be used in the effectual hardware design of exponentiation architecture for public-key cryptosystem.

본 논문에서는 GF($2^m$)상에서 새로운 MSB 우선 곱셈 알고리즘을 제안하고, 셀룰라 오토마타(Cellular Automata, CA) 를 기반으로 한 곱셈기를 설계한다. 본 논문에서 제안한 곱셈기는 PBCA(Periodic Boundary CA)의 특성을 AOP(All One Polynomial)의 특성과 조화시킴으로써 기존의 구조에 비하여 정규성을 높이고 지연 시간을 줄일 수 있는 구조이다. 제안된 곱셈기는 공개키 암호화의 핵심이 되는 지수기의 구현을 위한 효율적인 기본구조로 사용될 것으로 기대된다.

Keywords

References

  1. E. R. Berlekamp, Bit-serial Reed-Solomon encoders, IEEE Trans. IT-28, Vol. 6, pp. 869-874. 1982
  2. T. R. N. Rao and E. Fujiwara, Error-Control Coding for Computer Systems, Engle-wood Cliffs. NJ: Prentice-Hall. 1989
  3. W. Drescher, K. Bachmann, and G. Fettweis, VLSI Architecture for Non Sequential Inversion over GF($2^{rn}$) using the Euclidean Algorithm, The International Conference on Signal Processing Applications and Technotogy, Vol. 2, pp. 1815-1819, 1997
  4. S. T. J. Fenn, M. G. Parker, M. Benaissa, and D. Tayler, Bit-serial multiplication in GF($2^{rn}$) using irreducible all-one opolynomial, IEEE Proc. Corrput. Digit Tech., Vol. 144, No. 6, pp. 391-393, 1997 https://doi.org/10.1049/ip-cdt:19971586
  5. C. K. Koc and B. Sunar, Low complexity Bit-parallel Canonical and Normal basis Multipliers for a class of finite fields. IEEE Trans. Comp.. Vol. 47, No. 3 pp. 353-356, 1998 https://doi.org/10.1109/12.660172
  6. C. H. Liu, N. F. Huang, and C. Y Lee, Computation of AB2 Multiplier in GF($2^{rn}$) Using an Efficient Low-Complexity Cellular Architecture, IEICE Trans. Fun dctmentals, Vol. E83-A, No. 12, pp. 2657-2663, 2000
  7. J. Von Neumann, The theory of seIf-reproducng automata, University of Illinois Press, Urbana and London, 1966
  8. C. N. Zhang and M. Y. Deng, and R. Mason, A VLSI Programmable Cellular Automata Array for Multiplication in GF($2^{rn}$), PDPTA 99 Memational Conference
  9. P. Pal. Choudhury and R. Barua, Cellular Automata Based VLSI Architecture for Computing Multiplication And Inverses In GF($2^{rn}$), IEEE 7th International Conference on VLSI Design, pp. 279-282, 1994
  10. Lidl R., and Niderreiter H.. An intro-duction to finite fietd and their apptications, CUP, Cambridge, 1986
  11. T. Itoh and S. Tsmii. Structure of Parallel Multipliers for a Class of Fields GF($2^{rn}$), Information and Computation 83, pp. 21-40 1989 https://doi.org/10.1016/0890-5401(89)90045-X
  12. A. K. Das, P. Pal, Chaudhuri. Efficient characterization of cellular automata, IEE Proceedings. Vol. 137. Part. E, pp. 81-87, January 1990
  13. D. D. Gajski, Principtes of Digitcd Design, Prentice-Hall International, Inc., 1997
  14. K. Hwang, Computer Arithmetic Principles, Architectures, and Design, John Wiley & Sons, 1979