o5 doldE Nxde ngud MAS A% LFAY

k0

ol o] HE A|2FE olFoo|HME JHE A Y3ly] YT R FRolth ¥ =FdAE old W
TZE GAEAN Ty F8 8FAIENS BAda AR gk gubE]l o] FololHE Alx
Hik T, o]Foo|HE Al2F] HAQ] TS Mad £ER ZEawd o £FEeE F
3t distaal gtk ojFco|HES] AYEA X F2 QT EE oo|HES] o|FAF B
9] AF Fol Ax" FF9 aFAgelY. F2 golreE] A9 olFdojdES] TR
£ 8 AFHE AoHE Tz Rdn EAET 2L o] T2 o] £EY QTANo)
th E =EME ol e Aa" 2 m2 oy Jo] $Fo] 8FAEE W) g AgaEel

|STAE BIEAI7]7] AR HHES G9sle, 53] o)FdcldES] B AT LFAE
o tieted B8tz g}

Requirements Analysis in Security Model
Design of Mobile Agent Systems

Jin-Ho Park* Jin-Wook Chung#**

ABSTRACT

A mobile agent system is an infrastructure that supports the mobile agent paradigm. The
main challenges encountered in designing this infrastructure are discussed in this paper.
After introducing a generic mobile agent system, we discuss the design issues at two levels.
Systemn level issues like the provision of agent mobility and security, are mainly encountered
in developing the runtime environments for agent execution. Language level issues, such as
agent programming models and primitives, arise in providing support for mobile agent
programming, mainly at the library level. This paper identifies such system and
language-level issues, and illustrates the different ways developers are addressing them. We
outhine the specific challenges addressed by this dissertation, primarily in the area of mobile
agent security.

78 HAEEZI=EA AW A25(2002. 12)

1. Introduction

Interest in network centric programming
and applications has surged in recent months
due to wvarious factors, such as the
exponential growth of the Intermet user base,
and the
Worldwide Web as a platform for information

widespread adoption of the

dissemination, electronic commerce and
entertainment. The increasing popularity of
Java, a language that facilitates mobility of
code across a network, is another driving
force. The use of Internet-based technologies
in private networks (thus creating intranets
and extranets) has further fuelled the demand
for network-based applications. In response to
this, new techniques, languages and
paradigms have evolved which facilitate the
creation of such applications. Perhaps the
most promising among the new paradigms is
the use of mobile agents. In this chapter, we
describe the mobile agent paradigm and
review its development from a historical
perspective. We consider its characteristics
and how they can be exploited by certain
classes of applications, and consider the
drawbacks of using mobile agents on open
networks such as the Internet.

In a broad sense, a software agent is any
program that acts on behalf of a (human)
user, just as different types of agents (eg.,
travel agents, insurance agents, secretaries)
represent other people in day-to-day
transactions in the real world. A mobile agent
then is a program which represents a user in

a computer network, and 1is capable of

migrating autonomously (under its own
control) from node to node in the network, to
perform some computation on behalf of the
user. Its tasks are determined by the agent
application, and can range from online
shopping to real-time device control to
distributed scientific computing. Applications
can inject mobile agents into a network,
allowing them to roam the network either on
a predetermined path, or one that the agents
themselves determine based on dynamically
gathered information. Having accomplished
their goals, the agents may either terminate
or return to their "home site” in order to
report their results to the user.

Harrison[1] identified several advantages of
the mobile agent paradigm, in comparison
with RPC and message-passing. These stem
from the characteristics of the paradigm
which allow it to:

* reduce network usage

*increase asynchrony between clients and
servers

*add client-specified functionality to
servers

» dynamically update server interfaces

- introduce concurrency

facilitate the
programming of several types of network

Mobile agents can

applications. However, the mobile agent
paradigm also adds significant problems,
primarily in the area of security and
robustness. The use of mobile agents requires
that each cooperating host in the distributed
system provide a facility for executing them.

These hosts are exposed to the risk of

olF dojHE Nz BARY HAE AT a7 Y 79

system penetration by malicious agents,
similar to viruses and Trojan horses. Unless
some countermeasures are taken, such agents
can potentially leak or destroy sensitive data
and disrupt the normal functioning of the
host. Malicious (or just buggy) agents can
cause inordinate consumption of resources
such as CPU time, disk space, network
connections oOr even screen space, thereby
denying their use to other agents and
legitimate users of the host. Security
mechanisms are thus necessary to safeguard
hosts’ resources from the agents executing on
them. Similarly, agents themselves may need
to be protected from the hosts they visit. An
agent is likely to carry as part of its state,
sensitive information about the wuser it
represents - e.g. credit card numbers,
personal preferences to customize an
intelligent search, or electronic cash to be
used for purchasing goods at merchants’
servers. Such data must not be revealed to
unauthorized hosts or agents, nor must they
be allowed to modify it arbitrarily. Thus,
security is usually the major concern in the
design of mobile agent systems.

As larger and more complex systems of
roving agents are deployed, the problem of
managing a user's agents becomes more
pronounced. Scalable mechanisms are needed
for naming and locating agents, even as they
migrate in the course of their tasks.
Application programmers need reliable control
primitives for starting, stopping and issuing
application-specific commands to these agents.
The agent system itself must incorporate
robustness and fault tolerance mechanisms to
allow such applications to operate over

unreliable networks.

2. Reference Model of Mobile
Agent System

We introduce a reference model for a
mobile agent system (along with the
associated terminology), which will serve as a
framework for the discussion that follows.
Figure 1. shows a simple model of a generic
mobile agent system, and an example of the
interactions involved. In the figure, Host-A
and Host-B are two machines connected by a
network. In order to participate in the mobile
agent system, each of them runs an agent
server process, which is a protected agent
execution environment. These processes are
responsible for hosting and executing any
agents that arrive over the network, and for
providing primitive operations to agent
programmers. Examples of such operations
include those that allow agents to migrate,
communicate, access host resources, etc.
Agent servers can communicate with each
other wusing a server-server protocol. A
logical network of agent servers in effect

implements the mobile agent system.

Figure 1. A mobile agent system

80 AREFw=FA A2Y A25(2002. 12)

In the figure, the agent server on Host-A
is currently hosting an agent, labelled Ag-X.
Agent Ag-Y, which was running on Host-B,
decided to migrate to Host-A, possibly
because it needs to communicate with Ag-X,
or because it requires some resource which is
available on Host-A. In response to its
request for migration, Agent Server-2
contacts Agent Server-1 and transmits Ag-Y
across the network. Agent Server-1 accepts
the incoming agent code and assigns a thread
to execute it. Thus, Ag-Y resumes its
execution at Host-A. It can now interact
locally with Ag-X and/or Agent Server-1. In
general, agents can migrate between agent
servers and execute within the environments
provided by these servers. A single network
host may have more than one agent server
running, each of which may have multiple
agents executing simultaneously. Agent
servers can be specialized to provide
application-specific services. For example, in
an electronic marketplace application, each
vendor runs an agent server that provides a
shop-front interface to customers’ agents.
The shop-front includes product descriptions,
price lists, etc. and mechanisms for agents to
look up such catalogs and order products.

3. Requirements of System
Level Design

Agents can execute on many different
hosts during their lifetimes. In general, we
cannot assume that these hosts have identical

architectures or even that they run the same

operating system. Thus, agents must be
programmed in a language that s
machine-independent and widely available.
Many useful agent applications will require
Internet-wide access to resources. Users will
need to dispatch agents from their laptops,
irrespective of their physical location. These
agents may utilize services or repositories of
data anywhere on the network. Hence, the
mechanisms used in the agent infrastructure
itself should scale up to wide-area networks.
Portability and scalability are therefore,
common demands made of the agent system.
We now discuss several other system-level

design issues.

3.1 Agent mobility

The primary identifying characteristic of
mobile agents is their ability to autonomously
migrate from host to host. Thus, support for
agent mobility is a fundamental requirement
of the agent infrastructure. An agent can
request its host server to transport it to some
remote destination. The agent server must
then deactivate the agent, capture its state,
and transmit it to the server at the remote
host. The destination server must restore the
agent state and reactivate it at the remote
host, thus completing the migration.

The state of an agent includes all its data,
as well as the execution state of its thread,
also referred to as its thread-level context. At
the lowest level, this is represented by its
execution context and call stack. If this can
be captured and transmitted along with the
agent, the destination server can reactivate
the thread at precisely the point where it

0% oo|WE A2idle Hetud AAS AT LT Y 81

requested the migration. This can be useful
for transparent load-balancing, since it allows
the system to migrate processes at any time
in order to equalize the load on different
servers. It may also be useful in some types
of fault-tolerant programs, allowing
checkpoint-restart schemes for recovering
from crashes. An alternative is to capture
execution state at a higher level, in terms of
application-defined agent data. The agent
code can then direct the control ow
appropriately when the state is restored at
the destination. However, this only captures
execution state at a coarse granularity (e.g.
function-level), in contrast to the machine
instruction-level state provided by the thread
context.

Most current agent systems execute agents
using commonly available virtual machines or
language environments, which do not usually
support thread-level state capturel. The agent
system developer could modify the virtual
machines for this purpose, but this renders
the system incompatible with standard
installations of those virtual machines. Since
mobile agents are autonomous, migration only
occurs under explicit programmer control, and
thus state capture at arbitrary points is
usually unnecessary. Most current systems
therefore rely on coarse-grained execution
state capture to maintain portability.

Another issue in implementing agent
mobility is the transfer of agent code. One
possibility is for the agent to carry all its
code as it migrates. This allows the agent to
run on any server which can execute the
code. Some systems do not transfer any code

at all, and require that the agent’s code be

pre-installed on the destination server. This
is advantageous from a security perspective,
since no foreign code is allowed to execute.
However, it suffers from poor flexibility and
limits its use to closed, local networks. In a
third approach, the agent does not carry any
code but contains a reference to its code base
- a server that provides its code wupon
request. During the agent’s execution, if it
needs to use some code that is not already
mstalled on its current server, the server can
contact the code base and download the
required code. This is sometimes referred to

as code-on-demand.

3.2 Naming and name resolution

Various entities in the system, such as
agents, agent servers, resources, and users
need to be assigned names which can
uniquely identify them. An agent should be
uniquely named, so that its owner can
communicate with or control it while it
travels on its itinerary. For example, a user
may need to contact his/her shopper agent to
update some preferences it is carrying. Agent
servers need names so that an agent can
specify its desired destination when it
migrates. Some namespaces may be common
to different entities - e.g., agents and agent
servers may share a namespace. This allows
agents to uniformly request either migration
to a particular server or co-location with
another agent with which it needs to
communicate.

Next, the
mechanism to find the current location of an

system must provide a

entity, given its name. This process is called

82 ABRFT=EA AW A25(2002. 12)

name resolution. The names assigned to
entittes may be location dependent, which
aliows easier implementation of name

resolution.

3.3 Security

The introduction of mobile code in a
network raises several security issues. In a
completely closed local area network -
contained entirely within one organization - it
is possible to trust all machines and the
software installed on them. Users may be
willing to allow arbitrary agent programs to
execute on their machines, and their agents
to execute on arbitrary machines. However in
an open network such as the Internet, it is
entirely possible that the agent and server
belong to different administrative domains. In
such cases, they will have much lower levels
of mutual trust. Several types of security
problems may arise:

« Servers are exposed to the risk of

system penetration by malicious
agents, which may leak sensitive
information.

Sensitive data contained within an

agent dispatched by a user may be
compromised, due to eavesdropping on
insecure networks, or if the agent

executes on a malicious server.

The agent’'s code, control ow and
results could be altered by servers for

malicious purposes.

Agents may mount “denial of service”
attacks on servers, whereby they hog
server resources and prevent other

agents from progressing.

The mobile agent system must provide
several types of security mechanisms for
detecting and foiling such attacks. These
include privacy mechanisms (to protect secret
data and code), authentication mechanisms (to
establish the identities of communicating
parties) and authorization mechanisms (to
provide agents with controlled access to

Server resources).

4. Requirements of Language
Level Design

Programming language support for mobile
agents can be discussed under two distinct
heads ~ programming languages/models, and

primitives for agent programming.

4.1 Agent programming languages and
models

Since an agent may execute on heterogeneous
machines with varying operating system
environments, the portability of agent code is a
prime requirement. Therefore, most agent systems
interpreted programming
languages(2], which provide portable virtual

are based on

machines for executing agent code. Another
important criterion in selecting an agent language
is safety. Languages that support type checking,
encapsulation, and restricted memory access are
particularly suitable for implementing protected
server environments for executing agents.

Several systems use scripting languages
such as Tecl, Python, and Perl for coding

o] ol o]
agents. These are typically high-level,
macro-like languages often used to glue

together operating system-supplied utilities.
They are relatively simple to learn and use,
and allow rapid prototyping for small to
moderate-sized agent programs. They have
mature interpreter environments which permit
efficient, high-level access to local resources
system facilities.

and operating However,

script programs often suffer from poor

modularization, encapsulation, and
performance. It is also di_cult to create and

maintain large applications wusing script

languages. Some agent systems therefore use
object-oriented languages such as Java,
Telescript or Oblig [2]. Agents are defined as
objects which encapsulate their state as well
as code, and the system provides support for
the Such

advantages of

object migration in network.
the

object-orientation in

systems offer natural

building agent-based

applications. Complex agent programs are

easier to write and maintain using

object-oriented languages. Some systems have

also used interpreted versions of traditional

procedural languages Ilike C, for agent
programming [3].
Mobile agent Jystems can differ

significantly in the programming model used
for coding agents. In some cases, the agent
program is merely a script, often with little
or no need for control ow. In others, the
script language (e.g. Python) borrows features
from object-oriented programming and
provides extensive support for procedural ow
control. Some systems model the agent-based
application as a set of distributed interacting

objects acting as agents, each having its own

AR BARY AAS 98 LT 24 83

thread of and thus able to

autonomously migrate across the network.

control

Others use a callback-based programming
model in which the system signals certain
events at different times in the agent's
life-cycle. The agent is then programmed as
a reactive set of

entity using a

event-handling procedures.

42 Programming primitives

In this section, we identify the primitive

language-level operations required by

programmers implementing agent-based
applications. We also illustrate the alternatives
supported by the mobile agent systems we
surveyed. Agent programming primitives can

be categorized into:

* Basic agent management agent
creation, dispatching, cloning and
migration.

» Agent-to-agent communication and
synchronization.

« Agent monitoring and control: status

queries, recall and termination of
agents.
* Fault tolerance: check pointing,

exception handling, audit trails,. . .

« Agent protection and security:

encryption, signing, data sealing,. . .

5. Mobile Agent Security
Issues

This
security issues addressed by this dissertation.

section defines the mobile agent

84 BFRRBEZ=FA 27 A25(2002. 12)

The major challenges were as follows:

» Designing secure agent transfer and
communications protocols

*» Protection of host resources

» Protection of agent code and state

* Secure control of remote agents

5.1 Secure communication and agent
transfer

Messages sent across an open network like
the Internet are inherently insecure. As a
mobile agent traverses the network, its code
and data are vulnerable to various types of
security threats. We consider the following
types of attacks on communication links, that
the system needs to protect against[4]:

(1) Passive attacks

In passive attacks, the adversary does not
interfere with the message traffic, but only
attempts to extract useful information from it.
The simplest such attack is eavesdropping,
which can result in the leakage of sensitive
information stored in the message (agent)
being transmitted. Even if the adversary is
unable to decipher the message contents
(because of encryption, for example), useful
information may be gleaned from the sizes
and frequency of messages exchanged, or
merely the fact that two principals are in
communication. This type of passive attack is
usually called traffic analysis in the security
literature. To counter passive attacks, a
confidentiality (i.e. privacy) mechanism is
therefore necessary.

(2) Active attacks

In the case of open networks like the
Internet, we must assume a Very general
threat model in which the adversary can
arbitrarily intercept and modify network-level
messages, or even delete them altogether and
insert forged ones. These are termed as
active attacks, since they involve active
interference by the adversary. Another type of
attack in this category involves impersonation.
The adversary impersonates one of the
legitimate principals in the system and can
attempt to intercept messages intended for
that principal. Active attacks require greater
sophistication on the part of the adversary,
but can also be more dangerous than passive
attacks. While we cannot always prevent all
such attacks, the damage caused by them can
be minimized if the communications link
provides assurances of data integrity (i.e. data
is either delivered unmodified or a ag is
raised signalling that it has been tampered
with) and authentication (i.e. the source and
destination of the message is unambiguously
identified).

Passive attacks are difficult to detect, but
can usually be protected against using
cryptographic mechanisms{4]. In contrast,
active attacks are relatively easy to detect
cryptographically, but given our general threat
model, they are di_cult to prevent altogether.
In an agent system, the server-server
protocol messages often contain sensitive
data, such as agent code (which may be
proprietary and therefore needs to be kept
secret) and data (which, as illustrated above,

needs to be protected as well). The agent

o]F olo]HE Ao BoRY HAE AT a7AE BA &

servers must also be provided with
mechanisms for detecting tampering and
impersonation. In other words, confidentiality,
integrity and authentication mechanisms must
be an integral part of the secure agent
transfer protocol. The mobile agent paradigm
itself imposes some additional constraints on
the possible solutions to these security issues.
For example, we cannot use certain
cryptographic techniques because agents
cannot carry secrets with them, for fear of
exposure to malicious servers. Also, since
agents usually operate autonomously, there is
minimal interaction with their human owners.
Thus, protocols that require interaction with
the user are often inappropriate in mobile

agent systems.

5.2 Protection of host resources

A host participating in a mobile agent
system runs an agent server process. The
agent server in turn allows the execution of
agent programs. Treating these programs on
par with local (trusted) software can expose
the host to various types of attacks, launched
by malicious agents. These attacks can be

categorized as under:

« pilfering of sensitive information
* damage to host resources
* denial of service to other agents

* annoyance attacks

We now illustrate these with examples. A
malicious agent may vVisit a server and
proceed to open files containing, say, company

secrets or financial data. It can transmit this

information back to its owner, who can use it
to gain a competitive advantage. This is an
example of the pilfering of information by
agents. An anti-social agent could damage its
host's resources by simply deleting files or
erasing the hard disk, much like various
strains of viruses and Trojan horses. It might
also attempt to mount a denial of service
attack - by using up the server’'s resources
(such as disk space, network ports or file
handles), it can effectively prevent the server
from doing business with other agents. Other
types of resources are also vulnerable - eg,
the agent can open up hundreds of windows
on the server’'s console, rendering it unusable.
It can make the computer beep repeatedly.
While these annoyance attacks may not cause
tangible
nevertheless have to be prevented.

damage to the host, they

It is clear therefore that the wvarious
resources of the host system need to be
protected from malicious agents. At the same
time, legitimate agents must be given access
to the resources they need. In this context,
the primary system-level problems that need
to be addressed in any mobile agent
architecture are:

*Binding of agents to the local
environment
» Authorization

« Enforcement of access controls

The mobile agent system must provide
mechanisms to agent servers for specifying
restricted access rights for agents - this is
usually termed as authorization. The rights
assigned wusually depend on the agent's

8 FEEBI=EA A2@ A2%(2002. 12)

identity (implying that a secure authentication
facility is necessary), and are determined by
consulting a pre-defined security policy. In
addition, we also need mechanisms for
enforcing the specified rights - this is the
problem of access control. The underlying
system-level problem is that of providing a
safe binding between the visiting agent code
and the local environment - enabling the
agent to access the resources it needs (in the
ways it is authorized to), but ensuring at the
same time that it cannot breach system
security by accessing resources it is not

authorized to use.

5.3 Protection of agents

When an agent executes on a host's agent
server, it is in e_ect completely exposed to
that host. The act of migrating to a server
implies a certain level of trust in that server
and its host. If the server happens to be
malicious, it can affect the agent in many
different ways:

* It can simply destroy the agent and thus
impede the functioning of its parent
application.

« It can steal useful information stored in
the agent, such as intermediate results
gathered by the agent during its travels.
It can modify the data carried by the
agent, for example changing the price
quoted by a competitor in a shopping
mall, to fool the parent application into
favouring the malicious server.

* It can attempt to alter the agent’s code
and have it perform malicious actions

when it returns to its home site. This is
especially dangerous, since the home site
could treat its own agents as trusted
entities, and possibly allow them to
bypass access controls to ifs own

resources.

An agent server must of necessity have
access to the agent’s code and state in order
to execute it. Parts of state in fact must
usually change, in order to store the results
of computations or queries. Thus it is not
possible to provide a general guarantee that
the agent will not be maliciously modified(5].
However, the parent application must have
some mechanism for detecting such
modifications. If it determines that the agent
has been "attacked”, it can take appropriate
measures, such as executing it in a restricted
environment (with stricter access controls
than it would use otherwise), or even
discarding it altogether.

When an agent is dispatched, it has an
initial itinerary of hosts to visit. Different
parts of the agent may be intended for
different hosts, and some parts may need to
be kept secret until the agent arrives at the
intended host. Since these hosts are usually
not trusted equally, agent applications need a
mechanism for selectively hiding and exposing
parts of the agent’s state and code to the
different agent servers it visits. Also, a
secure, verifiable audit trail which records the
actual path followed by the agent can be a
useful mechanism. This allows the application
to ensure that the agent followed the intended

itinerary.

ol% o]

5.4 Secure control of remote agents

A mobile agent application may dispatch
large numbers of agents to remote sites. It
may be necessary to periodically monitor their
progress and 1issue control commands to
them. The agent infrastructure must therefore
provide some means for the application to
query the status of its agents. The application
may decide to recall its agents back to their
home site, or terminate them midway through
their tasks if appropriate. Agent servers must
provide remotely invocable primitive
operations for this purpose. However, these
operations are liable to be misused by
malicious users. Therefore, only certain
authorized entities must be allowed to invoke
them. Thus, authentication of the caller is
imperative, and the server must establish and
enforce some rules about which entities can,

for example, terminate an agent.

6. Conclusions

The preceding sections identified the
security issues inherent in mobile agent
systems. These issue: translate into a set of
security mechanisms that the system needs to
provide, which can be summarized as follows:

(1) Privacy and integrity of the agent

The system must provide mechanisms for
secure communications, and secure transfer of
agent code and state as it migrates around an
insecure network. Tampering of the agent
should be detectable.

2

Aage] HtRd AAE HE 2 FAE B4 87

(2) Authentication of entities in the
system
The entities participating in a mobile agent
application, such as servers and agents, must
be unambiguously identified.

(3) Authorization and access control
Servers must be provided with a
mechanism for protecting their resources, by
specifying their access control policies and

enforcing them.

In this paper, we identified the major
research issues inherent in the development of
mobile agent programming systems. These
include system-level issues such as agent
mobility, global naming and security, as well
as language-level support for agent
programming, in the form of programming
languages, models and primitives. We
identified the variety of approaches that
system designers have taken to address these
issues. The specific research challenges
related to security that this dissertation
addresses include the design and
implementation of a research infrastructure for
mobile agent programming, the design of
secure agent transfer and communication
protocols, the protection of host resources
from malicious agents, the protection of
agents from tampering by other agents or

their hosts, etc.

Reference

[1] Colin G. Harrison, David M. Chess, and

88

(2]

(4]

(5]

FEEZ=EA A28 A23(2002. 12)

Aaron Kershenbaum. Mobile Agents : Are
they a good idea ? Technical report, IBM
Research Division, T. J. Watson Research
Center, March 1995.

Tommy Thom. Programming Languages

for Mobile Code. ACM Computing
Surveys, 29(3) 213~239, September
1997.

Lubomir F. Bic, Munehiro Fukuda, and
Michael B. Dillencourt. Distributed
Computing using Autonomous Objects.
IEEE Computer, pages 55~61, August

1996.

Warwick Ford. Computer Communications
Security - Principles, Standard Protocols
and Techniques. Prentice Hall, 1994.
William M. Farmer, Joshua D. Guttman,
and Vipin Swarup. Security for Mobile
Agents: Issues and Requirements. In
Proceedings of the 19th
Information Systems Security Conference,
pages 591 ~597, October 1996.

National

ST
1995 i thetnl A=A
AY8E3H(F 84
19979 ARG et
ARESAA B
1997¢ ~ @A YT B
@ ooge ANA% 2 A

FEH IR wﬂa)

20008 ~ 2002 $EU% BRAAAL HIB
2
20024 ~ dA U AHUBRIEAD

SOE 2

@a%
1979 AT ek o

QEEAA)
19919 g et tisty
A 25 A 8 3 (0] Bk a})
1973-1985 2 9381714
T2 A%

#7124 3 AFY TP

