Low temperature synthesis of $ZnWO_4$ nanopowders using polymeric complex precursor

착체중합법에 의한 $ZnWO_4$ 나노분말의 저온합성

  • 류정호 (한양대학교 세라믹공학과) ;
  • 임창성 (한서대학교 신소재연구소) ;
  • 오근호 (한양대학교 세라믹공학과)
  • Published : 2002.06.01

Abstract

$ZnWO_4$ nano-powders were successfully synthesized at low temperature by polymerized complex method using zinc acetate and tungstic acid as starting materials. The polymeric precursors were heat-treated at temperatures from 300 to $600^{\circ}C$ for 3 h. The precursors and heat-treated powders were evaluated for crystallization process, thermal decomposition, surface morphology and crystallite size. Crystallization of the $ZnWO_4$ powders were detected at $400^{\circ}C$ and entirely completed at a temperature of $600^{\circ}C$. The particles heat-treated at $400^{\circ}C$ showed primarily co-mixed morphology with spherical and silk-worm-like forms, while the particles heat-treated at $500^{\circ}C$ showed more homogeneous morphology. The average crystalline sizes were 17.62~24.71 nm showing an ordinary tendency to increase with the temperatures from 400 to $600^{\circ}C$.

착체중합법을 사용하여 nano-size의 $ZnWO_4$ powder를 저온에서 합성하였다. 금속이온물질로서 zinc acetate와 tungstic acid를 사용하였으며 용매는 de-ionized water를 사용하였다. $300^{\circ}C$ 부터 $600^{\circ}C$의 온도 영역에서 하소한 분말에 대해 열분해 및 결정화 과정, 분말의 형상, 입도 변화 양상을 분석하였다. 일반적인 고상합성 시에 필요한 온도보다 현저히 낮은 온도인 $400^{\circ}C$에서 $ZnWO_4$상이 생성되었으며, $600^{\circ}C$에서 완전한 결정상을 얻을 수 있었다. 합성된 분말은 $400^{\circ}C$에서 원형과 silk-worm 형태가 혼합된 입자 형상을 나타내었고 $500^{\circ}C$에서 보다 균질한 양상을 나타내었다. 합성된 분말의 입자 크기는 $400^{\circ}C$~$600^{\circ}C$의 온도영역에서 17.62~24.71 nm 정도로 매우 미세하였으며, 하소 온도가 증가함에 따라 분말의 결정상과 입도가 증가하는 것을 확인하였다.

Keywords

References

  1. L.G. Van Uitert and S. Preziosi, 'Zinc Tungstates for Microwaves Maser Applications', J. Appl. Phys. 33 (1962) 2908
  2. I. Foeldvari, A. Peter, S. Keszthelyi-Iandori, R. Capel-letti, I. Cravero and F. Schmidt, 'Improvement of the Quality of ZnWO$_4$ Single Crystals for Scintillation Applications', J. Crystal Growth 79 (1986) 14
  3. P.F. Schofield, KS. Knight and G. Cressey, 'Neutron Powder Diffraction Study of the Scintillator Material ZnWO$_4$', J. Mat. Sci. 31 (1996) 2873
  4. A. Kuzmin and J. Purans, 'Local Atomic and Electronic Sturcture of Tungsten Ions in AW04 Crystals of Scheelite and Wolframite Types', Radiation Measurements 33 (2001) 583
  5. A.R Phani, M. passacantando, L. Lozzi and S. San-tucci, 'Structural Characterization of Bulk ZnWO$_4$ Pre-pared by Solid State Method', J. Mat. Sci. 35 (2000) 4879
  6. A. Sen and P. Pramanik, 'A Chemical Synthetic Route for the Preparation of Fine-grained Metal Tungstate Powders (M = Ca, Co, Ni, Cu, Zn)', J. of Eur. Ceram. Soc. 21 (2001) 745
  7. M.P. Pechini, U.S. Pat. No. 3330697, July 11 (1967)
  8. M. Kakihana and M. Yasuoka, 'Polymerized Complex Route of the Synthesis of Multi-component Oxides', Sol-Gel Sci. & Tech., edited by E.J.A. Pope, S. Sakka and t,c Klein, Ceram. Trans. 55 (1995) 65
  9. P.A Lessing, 'Mixed-cation Oxide Powders via Poly-meric Precusors', Am. Ceram. Soc. Bulletin 68(5) (1989) 1002
  10. K-N.P. Kumar, K Keizer and AJ. Burggraaf, 'Textural Evolution and Phase Transformation in Titania Mem-branes : Part 1. Unsupported Membranes', J. Mater. Chem. 3 (1993) 1141
  11. M. Bonanni, L. Spanhel, M. Lerch, E. Fuglein and G. Muller, 'Conversion of Colloidal ZnO-WO$_3$ Hetroaggre-gates into Strongly Blue Luminescing ZnWO$_4$ Xerogels and Films', Chem. Mater 10 (1998) 304