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Abstract

We investigate the history of the research of the existence of periodic solutions of a
nonlinear wave equation with jumping nonlinearity, suggested by McKenna and Lazer
(cf. [15]). We also investigate the recent research of it; a relation between multiplicity

of solutions and source terms of the equation when the nonlinearity — (but—au™)

crosses eigenvalues and the source term f is generated by eigenfuntions.

0. Introduction

In this article we investigate the history of the research of the existence of periodic
solutions of a nonlinear wave equation with jumping nonlinearity, under Dirichlet

boundary condition
Up— Ut but —au"=fx, H in <——27£’ -%)XR, .1
+ L A
u(__ 9 » t) 0,
u is m-periodic in ¢ and even in x, where #*= max{0, »}, fis a forcing term, and

t time variable. We also investigate the recent research of it; a relation between

multiplicity of solutions and source terms of the equation when the nonlinearity

* This work was supported by Inha University Research Grant.
2000 Mathematics Subject Classification: 35B10, 35120
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A history of researches of a nonlinear wave equation with jumping nonlinearity

—(bu" — au™) crosses eigenvalues and the source term f.
Choi and Jung [12] proved that if —1<a<3<b<7 and f(x, =sdy( yp is the
positive eigenfunction and s=XR), then for the case s>0, (0.1) has at least three

solutions, one of which is positive, and for the case s<0, (0.1) has at least one
solution, one of which is negative. The authors proved this result by the variational
reduction method. In this paper we improve this result. To state our result, let us
consider the set

{##—K|j, kN, jis odd and kis even}
whose role will be explained in the third section. Since this set is unbounded from
above and from below, and has no finite accumulation point, we can denote by

{ulke Z} a strictly increasing enumeration of it. Let {u; (k= N} and {u; k< N}
the sequence of positive and negative eigenvalues in {x,| k< N}, respectively. That is,
< pg < pg <pp <O<pf <pg <pg e
Let X and |]|- ||l be the Hilbert space and norm in X introduced in section 1.
Suppose that the forcing term is supposed to be a multiple s@y(s+0, s R) of the

positive eigenfunction. That is, we consider the following problem

Uy— U+ b — au™ = sppyin (—%,—g)xR, : 0.2

+Z A=
u(f 9 t) 0,
u is m-periodic in ¢ and even in x.

Now we state our main results:

In section 1 we introduce an invariant space X spanned by eigenfunctions and
investigate some properties. In section 3 we recall a critical point theory which is a
crucial role to prove the multiplicity results for the periodic solutions of (0.2). In section
3 we prove Theorem 0.1 and 0.2. In section 3 and 4 we investigate a relation between
multiplicity of solutions and source terms of the equation when the nonlinearity
—(bu*—au™) crosses an eigenvalue Ay and the source term f is generated by three

eigenfunctions.
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1. Invariant space spanned by eigenfunctions

Let @ be the square [—

Y
oy

]x[——g, _ZE] In L'(Q) we can consider the

’

Hilbert basis given by

¢ﬁ=g cosix (FEeN), ¢u= % cosjx coskt, ¢y= % cosjx sinkt (j, k€ N).

Let uELZ(Q). % can be written by

u= Zhjk¢jk+ ﬁjk‘/’j/z; J, k€N, 2[1hjk|2+| ﬁjklz] <oo,
It is easily seen that.the eigenvalues of A (Au=wuy— u,,) are A ,-k=j2— F. Let

E={u L QIZMul( b+ Ty’ <o),
The space E, endowed with the norm

Waelll = [ 230l € Bis® + 1T

A

is a real Hilbert space continuously embedded in LZ(Q). We define a subspace X of
E as follows:

X={ueE|hy k=0 whenever j is even or £ is odd}.
Then X is a closed invariant linear subspace of E compactly embedded in LZ(Q).
Moreover X is invariant under shifts: let #=X and 7 be a real number, if
v(x, )=wulx, t+17), then veX. X is invariant under a map from # to %' and a
mapfrom # to % ; if u€X, then ', u”=X. Moreover A(X) S X(Au= uy— u,)),
A:X—X is an isomorphism. As stated before, we denote by {ﬂ,‘:lkz 1} and

{¢r |£=1} the sequence of positive and negative eigenvalues, respectively.

We need the following some properties:
Proposition 1.1. () |llelll>|lu«|l, where [l«|| denote the L? norm of .
Gi) llull=0 if and only if [|l«ll]=0.

(iii) AuxeX implies u<X.

Proposition 1.2. Let ¢ not be an eigenvalue of A and w=X. Then we have
(A-o0 tueX.

- 143 -



A history of researches of a nonlinear wave equation with jumping nonlinearity

From Proposition 1.2, we have:

Proposition 1.3. Let f(x, =X. Let a and b not be eigenvalues of A. Then all the

solutions of
Au+but —au"=f(x, D
belong to X. »

For simplicity of notations, a weak solution of (0.2) is characterized by
Up— Ut bt — au" = sdy in X. (1.1)

2. A recall of critical point theory

Let X be a real Hilbert space on which the compact Lie group S! acts by means of

time translations, i.e. for #€X and 6 €[0, 7l, set:
seu(x, H=u(x, t+6).
Let Fix(S') be the set of fixed points of the action, ie.
Fix(SY) = {ueX|squ=u, V0<[0, 7]}
= {ueX|u is independent of ¢}.

We call a subset B of X an invariant set if for all weB, syzusB for all
00, 7]. A function f: X—R' is called S'-invariant, if f(spw)=f(u), YueX,
for all [0, n]. Let C(B, X) be the set of continuous functions from B into X. If
B is an invariant set we say heC(B, X) is an equivariant map if k(sgu) =sgh(w)
for all <[00, n] and w=B. Let S, be the sphere centered at the origin of radius 7.
Let f: X— R be a functional of the form

A2) =% (Lxlx) = 4(2)

where L:X—X is linear, continuous, symmetric and equivariant, ¢: X —X is of class

C' and invariant and D¢: X— X is compact. The following result follows from [9].

Theorem 2.1 Assume that fCY(X, R) is S'-invariant and there exist two closed

invariant linear subspaces V, Wof X and »>0 with the following properties:

_144..



Q-Heung Choi - Tacksun Jung

(@) V+ Wis closed and of finite codimension in X;
(b) Fir(S)SV+ W;
() LMW,
(d) supgsnyf <+ and infyf>—oo;
(e) ueFix(S') whenever Df(#)=0 and infyf <f(u) <sup sy f;
(f) f satisfies (PS). whenever infyf<c<supgsnyf.
Then f possesses at least

%(dim( VOW) — codimx(V+ W))

distinct critical orbits in f~ ([ infyf, sup snvfD.

3. An application of critical point theory

Let A:X—X be the linear, continuous and symmetric operator defined by
(Aulv)=fo —us vt u, - vy, (3.1)
and let f: X— R be the functional defined by
1 by +2,a, —2_
f)=5 (Aula)+ [ ZlutP+2 1w~ || dyu.

We note that f is well-defined. By the following proposition, f is of class C' and
if % is a critical point of f, then % is a weak solution of (0.1) with (0.2) and (0.3).
The functional f(w) is continuous, Fréchet differentiable in X with

Df(u)v=fo(u,,— U)o+ beu+ v—au - v—sz¢oov.

Moreover DfeC. That is feC.
We need the following two lemmas for Proposition 3.1.

Lemma 3.1. Let #=X be a critical point of f with # independent of # and a < — “1,
—up <b< —ppy;, k=1. Then the problem

Up— Ut bu” —au” =0 in X (32)
has only the trivial solution 2=0(cf. [12]).
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Lemma 3.1 also holds for the case

—pg <b< —pp, -, —puf <a, k21

Lemma 3.2. Let X be a critical point of f with independent of f a< —py,
—pp <b< —ppy, k21, s>0, and a>0 be given. Then there exists C >0 such
that for all b and a with a< —p;—@a, —gr+a<b< —pu—a the solutions: of

(1.1) satisfy |Jlulll< C.

Lemma 3.2 also holds for the case — pisq<b< —ui, -, -—,uf<a, k=1 and

s<0.

Proposition 3.1. Let w=X be a critical point of f with # independent of ¢
a<—py, —pr <b< —ppy, k=1and s>0. Then there exists C’ >0 such that

X
2
f(u)=—sg f_§¢00udx > —C'.

The compact Lie group S! acts on X by means of » time-translations, hence by
orthogonal transformations. It is easily checked that A is equivariant and f is
invariant. Moreover, A(X)SX, A:X—X is an isomorphism and Df(X)<X.
Therefore constrained critical points on X are in fact free critical points on S.
Moreover, distinct critical orbits give rise to geometrically distinct solutions.

First we consider the case a< —pu;, —pp <b< —pp+1, k=1and s>0. Let
cw=%(u; + p¢t441) and let L:X—X be the linear operator such that
(Lulv)=(Aulv)——coonuvdxdt.

Then L is symmetric, bijective and equivariant. Let X (L) be the negative space of
L and X*(L) be the positive space of L. Then
X=X (L)®X*(L).

Moreover, we have

Vue X (L) :(Luli= (prs = o) [ ol dxat,
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VueX (L) (Lulw)=(u; — cw) fQuzdxdt.

Thus there exists d >0 such that
(Lulwy< —dllulll?, VueX (L),

(Lulw=zdll«)ll?], VYueX (L).
Then

) =5 (Lulu) (a0,

where
_ (b, +t2_@a, -2 1. .2
¢'(u)—fQ[ 9 lo™ 5 lee™|“ + sppoue 5 Cooll ]aixdt.
Since X is compactly embedded in L? the map D¢: X— X is compact.
Lemma 3.3. Under the same assumptions of Theorem 0.1, the functional f satisfies

(PS). condition for every c€R: For every sequence (u,) in X with Df(u,)—0

and f(u,)—c , there exists a convergent subsequence of (u,)(cf. [12]).

Lemma 34. Leta< —py;, —#, <b< —ppy1, k=1and s>0. Then the functional
#(2) is bounded from above on X (L) and from below on X (L). That is,

SUp yex-(f(#w) <© and —oo <inf .y () f(%).

Proof. For ue X (L),
fw)y= L[%‘(uﬂ—un) . u+—211|u+lz+%]u_l2—s¢mu]dxdt
1l - 2, b +2, 4 -2
Szﬂk‘le”""le“l‘*‘sz‘i sL¢00u
=2 Ctr+ Ol 1P+ (i + a2 = [ oo < o,

since fp41+6<0 and mu,y;+a<0.

For uX"(L),
f(w)= f‘?[%(u“— Usp) * u+§blu+[2+-§—[u_l2—s¢mu]dxdt

Z%ﬂ;LuZ+gL|u+|z+% leu_lz—sz%ou 37)
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>L i + D12+ 5 (i + DI~ lad] > — o,

since #€L*(Q) and pp < —b<pi<-—a.

Let X (A) be the negative space of A and X' (L) be the positive space of A.

Lemma 3.5. Under the same assumptions of Theorem 0.1, there exists a neighborhood
S, of 0 with radius # >0 such that '

SUp yes,nx-(a)f (%) <0.

Proof. For ueX (A).
fd= [ [$ =) - wt Bl 1P £ 1P~ spou]deat

1l -(,2,.0b +2, 4 -12_
SzﬂILu+2Llu!+2Llul sfqmou
=107 +0 [P+ L 4 @) [luP s [ dou
1 #1+tb 42, 1 ta o
LKes—lllu +5———lllu —s u.
gt I+ g Sl Jo
Since g +a <0, there exists a neighborhood S, of 0 with radius r>( such that
SUD ,es,nx-(a) /(%) <0,

where Illull < 7 and Illalll* 2 41 llull?.

From Lemma 35 we have the following:

Lemma 3.6. Under the same assumptions of Theorem 3.1, there exists a neighborhood
S, of 0 with radius » >0 such that

Sup s,nX‘(A)f( w) — [l yerinsy <0

X
2

Proof. From Proposition 3.2, there exists C’>0 such that f( u)=—% i dpu>—C".
T2

From Lemma 45, there exists a neighborhood S, of 0 with radius #>0 such that

sup g nx-(a)f(#) = F(@)| episy <0.
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From Lemma 3.4 and Lemma 3.6, we have

Lemma 3.7. Under the same assumptions of Theoreml.l, we have

inf ueX*(L)f( %) <sup ues,nx-(A)f( u) < f(u)l ueFir(SY)"

Theorem 3.1. Let a< —ﬂ}, —pp <b< —ppe1, k21, and s>0. Then (0.2) has at

least /% solutions.

Proof. If we set V=X (A) and W=X"(L), then V and W are closed invariant
subspaces of X with L{(W)S W, We note that Fix(S'))SW. Since co<0, we have

V+ W=X. By Proposition 3.1, f is CNX, R'). By Lemma 34 and Lemma 35,
assumption (d) of Theorem 1.1 is satisfied. By Lemma 3.3, assumption (f) of Theorem
1.1 is satisfied. By Lemma 3.7, assumption (e) of Theorem 1.1 is satisfied. Thus by

Theorem 1.1, the problem (0.1) has at least -%—dim(VﬂW)=k nontrivial solutions. In

case —ppp <b< —pf, -, —uf <a, k=1 and s <0, denote by cw=%(uf{+u?:+l).

We introduce L as in the previous case and set V=X *(A) and W=X "(L).

We can apply the same argument of the functional — f as in the proof of Theorem

3.1 and we have the following.

Theorem 4.2. Let —pjy, <b< —pf, -, —pi <a, k>1 and s<0. Then (02) has

at least £ solutions.

4. Multiplicity for source terms in two dimensional space

Let Hj be the Hilbert space defined by
Hy={uesL¥Q): u is even in x and ¢}.
Then the set of eigenfunctions {@,.,} is an orthonormal base in H.

Let us denote an element u, in H, as u=2hm,,¢m,, and we define a subspace H of

HO as
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H={u EH():ZanVl%rm <o},

Then this is a complete normed space with a norm

1
Nadll = (A W) 2.
In this section, we investigate multiplicity of solutions u(x, #) for a piecewise linear

perturbation — (bu*—awu~) of the one-dimensional wave operator wy;— %, Wwith the

nonlinearity — (but— au™) crossing the eigenvalue A 10- We suppose that —1<a<3

and 3<b<T
Under this assumption, we have a concern with a relation between multiplicity of
solutions and source terms of a nonlinear wave equation

Lu+but —au =f in H.(41)

Here we suppose that f is generated by two eigenfunctions ¢q and ¢é.
Let V be the two dimensional subspace of H spanned by {dy, ¢10} and W be the
ofthogonal complement of V in H. Let P be an orthogonal projection H onto V.

Then every element w&H is expressed by u=v+ w, where v=Py, w=(I—Pu
Hence equation (4.1) is equivalent to a system

Lw+ (I- PY()(v+ w)* — a(v+w) ") =0, (4.2)
Lo+ P(6(v+w)* — alv+ w) ™) =580+ S2010. . (4.3)

Lemma 4.1. For fixed vV, (4.2) has a unique solution w= 6(v). Furthermore, 6(v)

is Lipschitz continuous (with respect to L? norm) in terms of v (cf. [12]).

By Lemma 4.1, the study of multiplicity of solutions of (4.1) is reduced to the study
of multiplicity of solutions of an equivalent problem

Lo+ P(6(v+ 8(0)) T — a(v+ 8(v) 7) = 5,600 + 52010 (4.4)
defined on the two dimensional subspace V spanned by {éw, ¢10}.
Since the subspace V is spanned by {éw, #10} and oylx, £)>0 in Q there exists

a cone C, defined by

Cl=[U= 19wt b 120, |Cz|$vcé‘]

so that v=0 for all v&C; and a cone C; defined by
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C3={U= Cl¢00+ Cz¢10: CISO, ICﬂS%}

so that »<0 for all veC;.

We define a map @: V—V given by
O(v)= Lo+ P(6(v+ & v) " — alv+6(v)) ™), ve V. (45)

Then @ is continuous on V, since @ is continuous on V and we have the following

lemma.
Lemma 4.2. ®(cv)=c®(v) for ¢=0 and ve V.

Lemma 4.2 implies that @ maps a cone with vertex (0 onto a cone with vertex 0.

Let C;(1<i<4) be the same cones of V as in Section 1. We investigate the images
of the cones C; and C; under @. First we consider the image of the cone C;. If
v=1cC19n+ c21p=0, we have

O(v) = c;(b+ Aw)dw + co(b+ Ar) By

Therefore @ maps C,; onto the cone

b+ A
R1={d1¢oo+dz¢m‘ 4120, ldyl< le‘( b+/1(1)2 )dl}-

The cone R; is in the right half-plane of V and the restriction Olc,: Ci—R, is

bijective.

We determine the image of the cone Cj. If v=— ¢;¢y+ c361;<0, we have
O(v) =~ c;(An+ @+ c (A + @) dy.
Thus @ maps the cone Cj onto the cone

1 /110+a ld’
72- /100+a 1}'

The cone Rj is in the left half-plane of V and the restriction @l¢: C3—Rj is

R3={d1¢oo+dz¢1o 141 <0, &<

bijective.

We note that R, is in the right half plane and Ry is in the left half plane.

Theorem 4.1. (1) If f belongs to R;, then equation (4.1) has a positive solution and
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no negative solution. (ii) If f belongs to Rj, then equation (4.1) has a negative solution

and no positive solution.

The cones C,, C; are as follows
C2={Cl¢oo+cz¢1o3 220, 2 #Icﬂ}.
= . 1
C4—[Cl¢00+ Cz¢m.C2$O, CZS 75"6‘1'},

Then the union of four cones C;{(1 <i<4) is the space V.

Lemma 4.2 means that the images ®(Cp) and @(C,) are the cones in the plane V.,

)

Apta b+ 2
R'4={d1¢00+d2¢105d230, ‘/é( A?g+a)dzsdlsﬁ(_b_-—1—/1_$)ld2|]'

Before we investigate the images @(C;) and @(C,), we set

Aoo'i"d
1110+a

b+ Ay

R'z={d1¢oo+dz¢1o:d220, _‘/5’ b+ Ay

@smsﬁ’

Then the union of four cones R;, K3, R;, R, is also the space V.

To investigate a relation between multiplicity of solutions and source terms in the
nonlinear wave equation

Lut+bu*—au" =fin H, ‘ (4.6)
we consider the restrictions @l (1<7<4) of @ to the cones C;. Let @,= |, ie,
0;: C,'“’ V.

For i=1, 3, the image of @;is R; and @;: C;— R; is bijective.

From now on, our goal is to find the image of C; under @; for i=2, 4. Suppose
that 7y is a simple path in C, without meeting the origin, and end points (initial and
terminal) of 7 lie on the boundary ray of C, and they are on each other boundary ray.

Then the 1image of one end point of 7 wunder @ is on the ray

cl(b+/100)¢00+71§cl(b+ Ad, =20 (a boundary ray of R;) and the image of

the other end point of 7 under @ is on the ray c¢;{Ag+ a)¢00+715c1(/110+ a)du,
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c;=0(a boundary ray of Rj). Since @ is continuous, @(7y) is a path in V. By

Lemma 1.2, @(y) does not meet the origin. Hence the path @(y) meets all rays
(starting from the origin) in R|{UR’, or all rays (starting from the origin) in R J\UR;.

Therefore it follows from Lemma 4.2 that the image ®(C;) of C, contains one of sets

RIUR4 and R,2UR3_

Similarly, we have that the image @(C,;) of C; contains one of sets

R1UR’2 and R4UR3

Theorem 4.2. Let —1 <a <3<b<T7 satisfy the condition

] |
Vo1 T Vas1 <L (47

Then we have the followings.

(i) If feIntR,, then equation (4.1) has a positive solution and at least two sign
changing solutions.

(ii) If f=0R,, then equation (4.1) has a nonnegative solution and at least one sign
changing solution.

(iii) If feIntR ;(i=2, 4), then equation (4.1) has at least one sign changing solution.

(iv) If feIntR;, then equation (4.1) has only the negative solution.

(v) f f€0R;3, then equation (4.1) has a nonpositive solution.

5. Multiplicity for source terms in three dimensional space

In this section, we investigate a relation between multiplicity of solutions and the

source terms of a nonlinear wave equation when the source terms belong to the three
dimensional space spanned by ¢y, #19, and @, (D b0, $10)-
First we consider
Lu+bu™ — au™ = 5160+ 2610+ €Dap. (5.1)

Let V, Wand P be the same as in section 1. Then equation (5.1) is equivalent
to a system
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Lw+ (I— PX(b(v+ w)* — a(v+ w) ™) =edy, (5.2)
LU+P(b(U+w)+'—d(U+ W)—)=Sl¢00+82¢10. (53)

Lemma 5.1. For fixed vV, (52) has a unique solution w=60/(v). Furthermore,

6.(v) is Lipschitz continuous (with respect to L2 norm) in terms of v.

Proof. We use the cotraction mapping principle. Let delta= %(a+ b). We rewrite (5.2)

as
(= L—8w=(I—- P v+ w) " —alv+ w)~ v+ w) — edy),
or equivalently,
w=(—L—8 (I-P)g,(w)— eém), (5.4)
where _
glw)=blv+ w) "~ alv+ w) " — v+ w).
Since lg,(w;) — g,(wy)l <|b— dllw, — w;|, we have
lg.(w1) — g, (w)l < |b— 8llw, — wyl,
where | | is the L? norm in H. The operator (—L—9¢) "}(I—P) is a selfadjoint
compact map from (I— P)H into itself. The eigenvalues of (—L—¢8)"'(/—P) in W
are (Au,—8)~', where A,, =7 or A,,<—1. Therefore its L? norm is

max{725. s )

Since |b—68}<min{7—45, 1+ 8}, it follows that for fixed veV, the right hand side
of (5.4) defines a Lipschitz mapping W into itself with Lipschitz constant y<1. Hence,
by the cotraction mapping principle, for given vV, there is a unique win W which
satisfies (5.2).

Also, it follows, by the standard arguement principle, that 8 .(v) is Lipschitz

continuous in terms of v.

By Lemma 5.1, the study of multiplicity of solutions of (5.1) is reduced to the study
of multiplicity of solutions of an equivalent problem

Lo+ P(K(v+0.(0)" — a(v+ 0.(0)) ™) = 5,000+ S2610 (5.5)

defined on the two dimensional subspace V.
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Since the subspace V is spanned by {¢w, d1o} and v>0 in Q for all veC,, there
exists a convex subset C,, of C; defined by
Cr={v=c1dp+ 2¢1p: v+ edy>0 in Q}
and a convex subset Cji. of C defined by
Cie={v=rc1pn+ c2610: v+ edx <0 in Q).
We define a map J: RXV—V given by
J(e, v)= Lo+ P(b(v+ 0. ()" —a(v+ 8.(v)) "), veV. (5.6)
Then for fixed { €}, Jis continuous on V, since #.(v) is continuous on V. Also, it is

easily proved that for fixed v, Jis continuous on V.
Lemma 5.2. For fixed vV, Jis continuous on R.

Proof. It is enough to show that for fixed v, 6.(v) is a continuous function of & We

use the cotraction mapping principle. Let 8= —ZL(a +b). Let w;(i=1, 2) be the unique
solution of
(=L—-w={I-P( v+ w)* —a(v+w)~ v+ w) — e:py),
or equivalently, _
w=(—L—8"'(I— P)g,(w) — &;¢x), G
where
gw)=blv+ w) " — alv+w) "~ v+ w).
Then we have, by Lemma 5.2,

| $on]
le—w2|S?lw1~wzl+ﬁlel-—ezl,
or equivalently,
| oo
(1'—7)le 7"’2'S [/120+a| ’El 52':

which means that for fixed v, 6.(v) is a continuous function of &, where y<1.

We note that if v is in C,, then 8/ v)=b_—€ﬁ $%. In fact, if visin Cj, then

vtetn>0 in Q and hence v+F=Fdp>0 in Q. Hence 0(0)=%7 da
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satisfies L8.(v) + (I— P)(b(v+ 0.(0)) " — a(v+ 0.(v)) ") =&dy.
Also, if v is in Cg, then v+e&dy<0 in @ and hence v+-a—fT5¢zo<0 in @

Hence 6.(v)= £ ¢ satisfies the above equation.
a—15

We investigate the images of the convx sets C;. and Cj; under J. First we
consider the image of the cone Ci.. If v=c19y+ cody is in Cy,, then v+ 8.(v) >0

in @ and hence we have
J(e, v)=c;(b+ Ap) o + ca( b+ Ap)byo.

Thus, for fixed epsilon, the image of C,. under J, J(e, C,.), is a convex subset of

R1={d1¢00+d2¢10: 420, 1)< 35 s( Z:j;g )a’l}.
For fixed ¢, the restriction J| ¢, : Ci.—J(e, Cy.) is bijective.
We determine the image of the cone Cj3.. If v=c\dyp+ c2dy is in Cas, then
v+ 6,(v) <0 in Q and hence we have

Ke, v)=—c;(An+ Q)dypt c2(Ay+ a)dy.

Thus, for fixed epsilon, the image of Cj. under J, K&, Cj3,.), is a convex subset of

Apta
Ry={did + dop’ <0, dy< | L2 1],

For fixed ¢, the restriction Jic,: C se—J(e, C3.)is bijective.
Let >0 be fixed. If vis in C,,, then Be(v)=b__—€15¢20 and ﬁ(v+ da) >0,

b—15—¢
b—15

v>0 in Q. Hence we have the lemma.

Lemma 53 Let e€>0 be fixed Then there are open sets C i, C 3 with

C..CC, . CC, C3CC ;3 CCs; such that He(v)=—bj€T§¢20 for all vel |,

05(v)=7_il—5—¢20 for all vel .

Theorem 5.1. Let & >0 be fixed. Then we have:
(i) If f belongs to J(g, C;.), then equation (5.1) has a positive solution and no
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negative solution.
(i) If f belongs to J(e&, Ci.), then equation (6.1) has a negative solution and no

positive solution.

We define two sets Cs,, Cy4 as follows
Coc={v=1c1p+ c3010: 220, veIntC,,, ventCs,,},
Ce={v=1c10pn+ c201: ,<0, v&IntCy, ventCs.).
Then CZC C,., C4CCy. and the union of four sets C; (1 <i<4) is the space V.
For fixed e>0, we set
R..=J(e, C1), R3=J(e, Cs)
R e={v=didp+ dsdy: &> 20, veIntR, veIntRsl},
R ={v=dippt dotyy: &><0, veIntR,, ventR,]},
I.={v=c¢n:lcl<g}, Is={veV:dy, I)<8I\(R,.UR,),
where (v, I,))=inf{lv—w|l:wel.}.
Then R';CR 4, RyCR 4 and the union of four sets Ry, K 3, R3, R 5 is V.
We note that C;=Cy(1<i<4) and R,=R(i=1,3), R;=R ;3 (j=2, 4).

Since J is continuous, by Lemma 5.4 we have:

Lemma 54. Let —1 <a <3 <b<T7 satisfy the condition (4.7). Then, for small &>,
there is 8 >0 such that J(e, Cj.) contains (R;.UR 4)\I, and J(&, C,) contains

(Rle UR Ze)\Iea-

Lemma 55. Let —1<a<3<b<7 satisfy the condition (4.7). Then, for small € >0,

the equation Lu+ bu™ — au™ = s, dog+ s310+ by has at least one solution.

Proof J(&, +) is continuous in » and homotopic to @. J(e, C3.)=®(Cs.)=R;
and J(e, 3C3.)= @(C3.). Since O(V\C3) contains V\Rj, J(e, C3.) contains it,

which completes the proof.

With Lemma 5.3 , Lemma 5.4, and , we have the following.
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Lemma 56. Let —1<a <3 <b<T satisfies the condition (4.7). Let v=35;@p+ s20
and f= v+ edy. Then, for small € >0, we have the followings.

(i) ¥ v=(IntR,.), then equation (5.1) has a positive solution and at least two sign
changing solutions.

(ii) If ve(IntR,,), then equation (5.1) has a nonnegative solution and at least one
sign changing solution.

(i) f ve(Int R )(i=2, 4), then equation (5.1) has at least one sign changing
solution.

(iv) If v=(Int R3.), then equation (5.1) has a negative solution.

v) If ve (dR,), then equation (5.1) has a nonpositive solution.

If Lutbu™ —au =s 00+ s:00+eby has m multiple solutions, then so is
Lu+ bu™ — au™= ks, ¢+ 53610+ edx) (£ >0).
If a=ke(k>0,e>0), then C;,=kC,, Cs,=FkCs..
We note that C(—y=C14 Cy—9= Ca.l}-
If v+egyp>0in Q(veV) then veC) and if v+epdy<0 in Q(veV), then
vels. ‘
We set :
U={vt+epy:veR,, e€ R}, Uy={v+edy: vER;, c€R},
U, = span{dw, $10, $2}\ (IntU; UInt Uy,

With the above notations and facts, we have:

Theorem 5.2. Let —1 <a <3 < b<7 satisfy the condition (4.7). Let
f=5190+ 52019+ edy.
Then we have the followings.
(i) If feIntU,, then equation (5.1) has a positive solution and at least two sign
changing solutions.
(ii) If f=dU,, then equation (5.1) has a nonnegative solution and at least one sign
changing solution.

(iii) If f=IntU,, then equation (5.1) has at least one sign changing solution.

(iv) If feU,, then equation (5.1) has a negative solution.
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Let ¢,, be an eigenfunction corresponding to Ams(Ama* A0, Aw). We consider the
equation
Lu+but — au™= s, doo+ 52010+ S3b mn- (5.8)

By the similar method of the proof of Theorem 6.2, we have the following.

Theorem 5.3. Let —1 <a <3 <b<7 satisfy the condition (4.7). Let
=510+ 52010t 530 mn (AmaFAw, A 10)-
Then there are cones Uj, U;, Us in span{dy, $10, $ms} which satisfy he followings.
() ¥ felIntl,, then equation (58) has a positive solution and at least two sign
changing solutions.
(i) If fe Ui, then equation (5.8) has a nonnegative solution and at least one sign
changing solution.

(iii) If feIntU,, then equation (5.8) has at least one sign changing solution.

(iv) If feUs,, then equation (5.8) has a negative solution.
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