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The NF-16D VISTA Simulation System

George M. Siouris

Abstract: Called VISTA (Variable-stability In-flight Simulator Test Aircraft), the one-of-a-kind NF-16D has a simulation system that
can mimic several aircraft. Though housed in an F-16 Fighting Falcon airframe, VISTA can also act like the F-15 Eagle or the Navy’s
F-14 Tomcat. More importantly, such flexibility allows for improved training and consolidation of some sorties. Consequently, USAF
Test Pilot School students will have an opportunity to learn how to test future integrated cockpits. In this paper, we will use the mul-
tiple model adaptive estimation (MMAE) and the multiple model adaptive controller (MMAC) techniques to model the aircraft’s
flight control system containing the longitudinal and lateral-directional axes. Single and dual actuator and sensor failures will also be
included in the simulation. White Gaussian noise will be included to simulate the effects of atmospheric disturbances.
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L. Introduction

The USAF’s VISTA NF-16D aircraft is one-of-a-kind air-
craft that can mimic the flying qualities of the F-15 Eagle and
the Navy’s F-14 Tomcat. The VISTA aircraft provides the
USAF Test Pilot School student an opportunity to learn how to
test future integrated cockpits. Such flexibility allows for im-
proved training and consolidation of some sorties. It also pro-
vides a better value for flying-hour costs. On a single sortie,
students can evaluate the specific flying qualities of the F-14’s
direct lift control feature, or experience the unique pitch con-
trol characteristics of a delta wing aircraft like the F-106 Delta
Dart, which is no longer in the Air Force inventory. Flying
different types of aircraft is key since some students come
from the Navy, Marine Corps and allied countries. This air-
craft will save money and time, since students don’t have to
fly in each kind of aircraft to get the same quality learning
experience. Moreover, the system lets students “peal back” the
layers of flight control features in today’s digital fly-by-wire
systems to see the effects of each. In one demonstration, stu-
dents start flying the basic F-16, then sequentially remove
flight control features until they are flying the aircraft manu-
ally. This gives vivid and dramatic proof for the need and ef-
fects of computerized flight controls on inherently unstable
aircraft like the F-16.

At the heart of the aircraft is a simulation system with a
suite of high-speed digital computers. They sense and digitally
record all necessary aircraft data and transmit them in real-
time via telemetry downlink. That process was useful when
the aircraft was used to help develop such leading-edge de-
signs like the F-22 Raptor, the Joint Strike Fighter and
NASA’s X-38 shuttle lifeboat. The system has an automatic
safety monitoring system. It is easily reconfigured from one
aircraft to another during flight and has an all-attitude simula-
tion capability. The aircraft also features an integrated pro-
grammable helmet-mounted display (HMD).

In this paper, a complete F-16 flight control system is inves-
tigated, with particular emphasis in modeling the longitudinal
and lateral-directional axes. In particular, the multiple model
adaptive estimation (MMAE) and multiple model adaptive
controller (MMAC) algorithms will be used in the Variable-
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stability NF-16D In-flight Simulator Test Aircraft (VISTA).
Single and dual actuator and sensor failures are simulated,
which include the following: a) complete actuator failures, b)
partial actuator failures, ¢) increased sensor noise, d) sensor
biases, and e) combinations of actuator and sensor failures.
These failures are examined in light of both maneuvering and
straight and level flight conditions. White Gaussian noise is
included in order to simulate the effects of atmospheric distur-
bances, and white Gaussian noise is added to the measure-
ments in order to simulate the effects of sensor noise.

As stated above, the present investigation makes use of both
the MMAE and MMAC algorithms. Although these algo-
rithms were developed in the early seventies, the application
of the algorithm was not practical at the time. The reason is
that the MMAE algorithm uses multiple elemental controllers
each of which can represent a specific failure condition. That
is, application of the algorithm was not feasible until the de-
velopment of parallel processing digital computers. However,
the complexity and inherently nonlinear nature of the multiple
adaptive controller prevents complete theoretical analysis of
its closed-loop performance.

Previous research efforts have addressed a number of inter-
esting modifications to the MMAE/MMAC algorithms for a
variety of different aircraft, that the NF-16D VISTA aircraft is
able to simulate [1], [5]. However, these research efforts con-
sider only the longitudinal axis with no cross-axis coupling. In
the present investigation, we will investigate the ability of
MMAC-based controller to monitor the current state of the
NF-16D aircraft in both longitudinal and lateral-directional
axes, at a low dynamic pressure flight condition (i.e., 0.4
Mach at 20,000-ft.). It should be noted that a low dynamic
pressure test case provides an environment in which control
surfaces are less effective and dynamic damping is poor.
Therefore, this case will demonstrate the algorithm’s charac-
teristics under unfavorable circumstances. Moreover, it should
be pointed out that the most obvious limitation in this investi-
gation is the use of a linearized VISTA NF-16D aerodynamic
model (note that in the sequel we will call the VISTA NF-16D
aircraft simply VISTA). In the present investigation, we will
simulate the Dryden wind model, using the appropriate shap-
ing filters driven by white Gaussian noise of the appropriate
strength.
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II. Model methodology and development
1. Aircraft model
The aircraft model is represented as a linear continuous-
time dynamics equation given by

dx/dt = Ax(t) + Bu(t) 0]
with an output equation
WD) = Cx(t) + Du(?) 2
and a discrete-time measurement equation given by
z(tr) = Hx(t;) + Du(tp) + v(tp) 3)

where u(?) is the adaptive control vector, and y(¥), z(t,), v(t;) are
identical in dimension and physical interpretation of compo-
nents for the truth and filter models. Generally, the truth mod-
els are of higher state dimensionality than the filter models
due to higher order actuator models, discrete gust models,
wind models, etc. Additionally, the truth model contains actua-
tor rate and position limiting functions. The noise vector v(t;)
is a zero-mean white Gaussian noise with covariance R. The
covariance matrix represents measurement inaccuracies
caused by sensor noise. Note that the high frequency sensor
dynamics are omitted from the aircraft dynamics model since
these are secondary effects. The aircraft velocity can be ex-
pressed as

du(tp)/dt = Xg' 0+ X, u+ X, a+X,’q +
+ Xs5'OS + Xgr'OF + Xggr' OLEF %

withX;” = X,/ (ml,), where m is the aircraft mass and I, is
the moment of inertia about the aircraft x-axis. The stabilator
and flaperon inputs are expressed as

OsXag '(&‘L + dS‘R) and .0.5X5F ,(éF‘L + éFR),

respectively. In state space format, the aircraft equation of
motion is as follows:
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Conventionally, positive deflections are defined as stabilator

trailing edge down, left flaperon trailing edge down, and rud-
der trailing edge right (i.e., those deflections that produce

positive moments). Table 1 summarizes the various state vari-
ables, while table 2 summarizes the control variables.

Table 1. Aircraft state variables.

State Variables Units
8- pitch angle [rad]
u - forward vel. [ft/s]
« - angle-of-attack [rad]
q - pitch rate [rad/s]
¢- bank angle [rad]
p- sideslip angle [rad]
p - roll rate [rad/s]
¥ - yaw rate [rad/s]

Table 2. Control variables.

Control Variables Units
S, - Left stabilator [rad]
Sz - Right stabilator [rad]
OF; - Left flaperon [rad]
&Fr - Right flaperon [rad]
OF - Rudder [rad]
OLEF — Leading edge flap [rad]

Note that the above two tables lists the eight state variables
and six control variables, respectively. Furthermore, each of
the state variables can be expressed in terms of dimensional
derivatives.

The aircraft model was run on a simulation program resid-
ing at the Flight Dynamics Laboratory at Wright-Patterson
AFB. Also, the dimensional derivatives of Eq.(5) were devel-
oped using this simulation program. This program contains the
VISTA flight control system as well as a complete nonlinear
aerodynamic database. The code allows the user the ability to
linearize the model about a trim condition. The thrust remains
constant for this application. A FORTRAN coded flight con-
trol system was used for the MMAE simulation with lin-
earized model against the full VISTA flight control system
with nonlinear aerodynamic database.

Next, the normal and lateral acceleration at the center of
gravity were computed by the following equations:

Apeg=~Zoa + Zg+Zu+ZsdS+ ZspdF +

+ Zsgr OLEF) 6)
Ay-cg: ~ (Y’gﬂ"" Ypp + YFF+
+ Yissi-asr (S, - OSg) + YsrdF + Y5z OR) (7

where 4, ., and 4, are the longitudinal and lateral accelera-
tions at the center of gravity (cg) and the dimensional deriva-
tives are shown in the unprimed body axes for convenience.
Using Eq.(3), the measurement equation is given by

u 01000000 @
a 0010 u
a
q
¢

oo o



116 ICASE: The Institute of Control, Automation, and Systems Engineers, KOREA Vol. 4, No. 2, June, 2002

v 0 000O0O0O0CT11 g
A\'—cg 0 0000 Zy1 Zy22y3 P
000O0O0O0 &5 ’
000000 &%
000O0O0O0 JF
Zp4 Zns Zn6 Zn7 0 Zns 5FR
000000 &R + vt
0 00000 OLEF
Zyq Zys Zy6 Zy7 28 0

®

where the subscripts # and y represent the normal and lateral
axes, respectively.
2. Evaluation of measurement noise covariance matrix
The sensor noise variances were determined by using flight
test data from NASA’s F-8 Crusader aircraft. Based upon the
noise correlation time constants (0.02 sec for angular rates,
0.01 sec for accelerations, and 0.005 sec for the angle-of-
attack), the bandwidth of the sensor noise is very large as
compared to the frequency response of the aircraft. We there-
fore conclude that the sensor noise is essentially white over
the bandwidth of the aircraft. The rms (root mean square)
noise values are listed in table 3:

Table 3. Sensor noise rms. Values.

Variable rms Noise Units
u 0.1 [ft/s]
a 0.10 - 0.30 [deg]
q 0.15-0.50 [deg/s]
Ape 0.02 - 0.06 [g’s]
P 0.75-2.00 [deg/s]
r 0.15-0.50 [deg/s]
Aycq 0.003 — 0.04 [g’s]

Conservative estimates, relative to anticipated VISTA sensor
performance, for o values are established as 0.1 ft/sec, 0.004
rad, 0.006 rad, 1 ft/sec’, 0.02 rad/sec, 0.006 rad/sec, and 0.6
ft/sec’, respectively.
3. Actuator dynamics model

The VISTA control surface actuators are modeled as fourth
order actuators. The transfer function used to describe each of
the actuators is given by

T(s) = 8C/8C cma
= (20.2)((141.4)(5214.5)/[(s + 20.2)(s + 141.4)-
(2 +107.05 + 5214.5) (9)

where 8C is the actuator (control surface) position and &Cepg
is the command surface position. The left and right stabilators,
flaperons, and the rudder use this fourth-order model to repre-
sent the surface dynamics. The leading edge flap is repre-
sented as a first-order lag given by the equation [3]

Tiee(s) = 16.0/(s+16.0). (10)
The MMAE software allows these control surfaces to be

modeled as either a first-order, second-order, or fourth-order
representation. The first-order approximation, implemented in

the filters, allows for a realistic simulation without the com-
plexity of a higher order state-space model:

Te(s) = 20.2/(s+20.2) (11)

It should be noted here that previous efforts encountered ro-
bustness difficulties associated with reduced-order actuator
models. Therefore, as mentioned earlier, the leading edge flap
is always modeled as a first-order lag. However, for the most
part, the first-order model approximation of Eq.(11) is used in
both truth the model and the filters. Some cases were run with
the fourth-order representation in the model and the first-order
representation in the filters. The results indicated some minor
performance degradation. Since the actual model in the air-
craft is effectively fourth-order, actual implementation would
require the filters to contain the fourth-order actuator model to
maximize the algorithm’s performance. Final implementable
controllers would most likely incorporate first-order filter
design models, and the truth model repeats this first-order
model in order to keep the computational load down, without
any severe misrepresentations of performance attributes. Ac-
tuator position and rate limiting are included in the truth
model. Note that, and as mentioned earlier, the flight control
system contains other limiting functions, such as internal sig-
nal and rate limiting, and pilot command limiting.

4. Actuator and sensor failures

In general, the performance of the MMAE algorithm in the
present investigation can be characterized as good. This is true
for single and multiple hard failures. The results are good for
all single hard failures of actuators and sensors using a pulse
train dither signal. In this section, actuator and sensor failures
will be discussed in view of hard and soft failures.

1) Actuator failures: Actuator failures are commonly
grouped into two categories: a) hard, and b) soft. Hard failures
are represented, as the complete loss of actuator control with
the surface trailing edge positioned as zero degrees of deflec-
tion. The leading edge flap is not included in the failure sce-
narios. This surface is not flight-critical and its inclusion only
complicates the ambiguity problems with the other flight-
critical surfaces. While the leading edge flap’s omission sim-
plifies the ambiguity issue, a filter could be designed to detect
this failure if desired. Hard actuator failures are modeled by
zeroing out the columns of the B-matrix (i.e., in Eq.(1)). Soft
failures are represented as a partial loss of actuator control
authority (as opposed to modeling a soft failure as a partial
loss of actuator rate capability). Arbitrary percentages are
selected to represent the loss of control authority. The critical
issue is whether the algorithm will be able to blend the outputs
of the fully functional filter with the appropriate hard failure
filter to achieve the proper control for the soft failure scenario.
Soft failures are introduced by multiplying the appropriate
columns of the B-matrix in the truth model with the percent-
age of control authority available.

2) Soft failures: Sensor failures are also grouped into two
categories, that is, hard and soft. Hard sensor failures are mod-
eled by assuming the complete loss of the sensor’s output. All
of the flight-critical sensors are included in this model. Zero-
ing out the appropriate row in the H-matrix represents a hard
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sensor failure. Unlike actuator failures in which one surface
can affect many different residuals, sensor failures have a
direct relationship to the associated scalar residuals and are
easily detected. Soft failures are modeled by assuming in-
creased sensor noise (as opposed to a bias). Increasing the
appropriate sensor variance matrix, R, within the truth model
represents soft sensor failures. Detection of a soft sensor fail-
ure is considerably harder when the elemental variance incre-
ment, from the sensor noise covariance matrix is small. We
conclude this section by mentioning multiple failures. Multi-
ple failures include all of the two-failure combinations: dual
hard actuator failures, dual hard sensor failures, hard actuator
and sensor failure; dual soft actuator failures, dual soft sensor
failures, soft actuator and sensor failures; combinations of
hard actuator with soft sensor failures, and combinations of
soft actuator with hard failures. Multiple failures are imple-
mented using the “moving bank” hierarchical structure in
Section 4.4. Moreover, multiple failures are implemented ac-
cording to a delay sequence, with the time between failures
selected by the user. Multiple failures require the generation of
a bank of filters designed for the first failure and any second
failure including a no-failure filter. Partial failures provide an
example of the robustness of the MMAE algorithm, to be han-
dled by blending the estimates from the appropriate hard-
failure elemental filter and the fully functional aircraft elemen-
tal filter.
5. The Dryden wind model

The development of the Dryden wind model is taken from
MIL-STD-1797A [9]. The design model computed in this
investigation assumes the value of turbulence rms. value, o=
1(flight turbulence). Pilot perception of turbulence is often
significantly different from the categories listed in the MIL-
STD-1797A. Sufficient evidence exists to suggest a value of &

= 1 may more accurately describe light to moderate turbulence.

The addition of the Dryden wind model modifies the aircraft
dynamics model of Eq.(5). Relating aircraft motion to air mass
motion (i.e., wind) in an inertial reference frame yields:

Vati = Vasm + Veusi (12)

where the subscripts g, i, and m are aircraft, inertial, and air
mass, respectively. Then the # from Eq.(5) can be expressed as
follows:

duldt =Xy (0- 0) + X, (u - u)) + X' (@~ a) +
+X4’(a - gt Xis'0S + Xip'8F + Xgipr SLEF (13)

where G,, 1y, and «, represent the gust or air mass velocity
effect on the state variables. Note that the elements from
Eq.(13) must be added (i.e., augment) to Eq.(5).

In the present investigation the discrete gust model was
used. From MIL-STD-1797A the magnitude of the wind shear
is computed from the relations

vw=ko, w=ko, v.=ko, (14)

where k varies from 0.4 to 2.6, and is tuned for each gust to
excite the natural frequencies of the aircraft. The rms intensi-
ties of forward, lateral, and vertical turbulence are described
by o, o,, and o, respectively. The magnitude of the wind

shear in each component direction are described by v,, v,, and
v,. After calculating the velocities for a given disturbance level
the gust variables are converted into the state variables of the
Dryden wind model. The discrete gust velocities are defined
as follows:
Ve =Aug, v, = Avy, V= Aw, (15a)
with the equalities
Aa, = (1/VpAw,, AS, (1/VAv, (15b)

where V7 is the aircraft velocity. From these equations result
the following relationship:

Aug= v (16)

Substituting the values Au, Ac,, and Af, into the Dryden
wind model equations provides additional terms with

Aag=v./Vr (17a)
AB.=v, /Vr (17b)
which to augment the wind disturbance model, with an addi-
tional term d,(7), as
dxgldt = Axy(t) + Gowy(t) + dy(f) (18)
where d(f) is given by the equation

dy(t) = [(-VilLyv, O (-1/2L,)v,
0 0 (12L)w

('”VT/éwa)
(aVrldbLYv, 011 (19)

III. Truth model
The aircraft truth model is represented as a continuous-time
dynamic system (see Eqns.(1 — 3))

dxnyldt = Arecrad(t) + Braind(t) + Grawnt) +

+ dpdt) 20)
with an output equation given by
Y8 = Crapxrp(H) + Drasteran(?) (1)
and the discrete-time measurement equation
=ty = Hoperad(tr) + Dryinadts) + v(t7) 22)

where wr(?) is a zero-mean white Gaussian noise of strength
Or, statistically representing aircraft disturbances generated
by random wind buffet. For the 4”-order actuator representa-
tions with state elements 8S;, Sy, etc. u,(f) becomes OL; g,
OSremas €tc. The X-)ema represents the input command to the
actuator model, and &-) is the output of the actuator which is
provided as input to the aircraft model. The aircraft state
model, Eq.(5), is augmented to incorporate the actuator and
wind disturbance models. In this investigation, the wind mod-
els are the only source of disturbances to the aircraft model.
Explicitly, the nonzero components in the augmented truth
model matrices Gy, and dyy, come from the wind model ma-
trices G, and d,,.

Assuming an inertial navigation system onboard the aircraft
and using the F-16 dynamics, the velocities and gyro related
white noise terms of the filter state model are given by the
following equations [10]:
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d(AV)dt = - gg (A8, + ) + (p. + 2Q)AV, +

+ (' Wny + ‘//ny - ez)Vy + AAX (23)
A(AV,Ydt = gg (AG: + ) - (p: + 2Q)AV, -

- (' ‘//ngx + '/IXQy - 02) Vx + AAy (24)
d(AQY/dt = - (AV, - y.V,)IRs + p.AG, 25)
d(AG)/dt = (AV, + y.V)/Re - pA6, (26)

dyJdt=- (p, + Q). + (p. + Q) y, +
+e + Ae, @7

dl//y/dtz (px+ Qx)y/z - (pz + Qz)‘//x+
+e, Tt Aeg, (28)

dV/z/dtz - (px+ Qx)‘//y - (py+ Qy)l//x +
+ e, + Ae; (29)

where Aé,, Ag, = INU position error in polar coordinates
Q,, Q,, Q, = Earth-rate torquing terms in platform coordi-
nates
Py, Py» P- = vehicle-rate torquing terms
e, ey, e; = INU gyro bias terms
Ae,, Ae,, Ae, = gyro-related white noise
Ve, Wy W, = INU misalignment angles
Ad,, A4, = accelerometer-related white noise
AV,, AV, = INS velocity errors
R = local Earth radius of curvature
gr = local gravity.

Note that the vertical velocity error, AV, is not estimated by
the filter, it is calculated to calibrate ¥, with, say, GPS (Global
Positioning System) velocity whenever GPS is available and is
processed as a filter measurement. The Kalman filter contains
a model that describes how the INU (Inertial Navigation Unit)
errors evolve with time, and a model relating the reference
sensor data (such as GPS) to the INU data.

The design models in this investigation were created with
first-order representations, while the full-scale wind model is
replaced with the “appropriately scaled” white noise. More-
over, the white noise used in the truth model is scaled relative
to strength levels used in the design models. An empirical
approach is taken to provide white noise that is noticeable, but
not offensive from a pilot’s perspective. The noise strength
levels were chosen to resemble light turbulence. Also, the
flight control system incorporates cross-channel effects. Limi-
tations in the size and scope of this investigation and the un-
necessary computational loading precluded the addition of
these models.

IV. Multiple model adaptive control and estimation

In this section we will briefly review the well-known
MMAC and MMAE-based controller methodologies.
1. The MMAC algorithm: an overview

The implementation of the multiple mode! adaptive model
controller for this application requires the design of a series of
individual elemental controllers corresponding to a set of fail-
ure modes at a given flight condition. Moreover, these control-
lers can be gain-scheduled to form an integrated flight control

system capable of functioning anywhere within the specified
flight envelope. Failure modes can be developed by analyzing
the flight control system, which is within its proposed operat-
ing environment. For example, a fighter is designed to operate
in a hostile environment. The failure modes for a fighter might
include the partial or complete loss of an actuator or control
surface. One would also include the biasing or complete loss
of any sensor, etc. In its most simplest implementation using a
constant-gain controller, each of the elemental controllers
consists of a Kalman filter based upon the aircraft plant corre-
sponding to the failed condition, cascaded with a deterministic
optimal controller gain, both based on an assumed parameter
value, say, a;. If a is a parameter representing a failure space,
then a;is one of the possible discrete realization of a, in this
case one possible failure mode. Each of the elemental Kalman
filters utilize the same measurement realization vector

() =z (30)

and generate state estimates x(¢;"), and a measurement residual
vector ri(t;), where

rit) = z; - Htx(#) (31)

where the subscript & corresponds to the parameter value of a;
assumed by the particular elemental filter. The residual vector
is difference between the observed measurement vector and
the predicted value from the filter. Hy(#;) is the measurement
matrix value from the kth filter, and x;(¢;) is the Kalman filter
estimate of the state vector before the incorporation of the
measurement at time ¢#;. Figure 1 illustrates the MMAC struc-
ture with its bank of k elemental controllers, each of which
corresponds to a given failure mode.

Kalman fifter Optimum gain
based on a, based on a,

Uppac

il ) [ Unsinc
Kalman filter Optimum gain s
based on 2, '. based on a; 3

.
A
2, T -
Kalman filter [ Optimu gain
based on a, L] based on 3

Usemaac

Hypothests
conditional probability
computation

Fig. 1. The multiple model adaptive controller.

Now, if the kth filter represents the current plant (i.e., the
failure condition), the magnitude of the residual from the filter
will be small, on the order of the size of the residual’s standard
deviation as computed within the &tk filter itself. The magni-
tudes of the residuals from the other “mismatched” filters,
representing other failure scenarios, will be larger than antici-
pated by the filter-computed standard deviation. Finally, the
elemental controller with the most accurate representation of
the current plant configuration will provide the smallest resid-
ual to the MMAC algorithm. Therefore, the algorithm will
assign a probability to each of the filters (i.e., assumed failure
scenarios) based upon the magnitude of the associated residual
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Referring to Fig.1, we note that after construction of the
residuals, a number of techniques can be used to assign prob-
abilities to each of the elemental controllers and generate an
adaptive control vector, upyc. In addition, we note that previ-
ous research efforts have addressed the formulation of the
control vector uupc Using a maximum a posteriori (MAP)
approach, along with a Bayesian approach [5]. In the MAP
technique, the single u; corresponding to the highest probabil-
ity p; (i.e., with residuals having the smallest magnitude rela-
tive to the filter-computed standard deviation) would be se-
lected as the control vector to apply to the plant. From the
above discussion, we note that the Bayesian form of the
MMAC algorithm produces a probability-weighted average of
the form [2], [6]

K

npact) = T wxlt;”), 1] pity) (32)
k=1

where K is the total number of elemental filter-controlled
combinations, ux ("), #;] is a deterministic optimal full-state
feedback control law, and x,(z,") is the state estimate generated
by a Kalman filter for the kth failure mode modeled within the
multiple model adaptive controller. Thus, the control applied
to the plant is the probability-weighted average of all of the
individual elemental controller outputs. The Bayesian form is
ideally suited to address failures that may not be explicitly
modeled within the MMAC hierarchy. As such, it is capable of
blending the output of two or more elemental controllers to
adapt to an unmodeled failure condition.

While the Bayesian form of the MMAC algorithm is a pow-
erful control technique, it requires some modification for prac-
tical implementation. That is, the blending of the outputs of
each of the elemental controllers allows for the adaptation of
the algorithm for failure scenarios not explicitly modeled
within the MMAC hierarchy. However, an optimum solution
would suggest that only the output of models with hypotheses
that “bound” the actual failure be included in the probability-
weighted control vector uyg4c-

2. MMAE algorithm development

Let a denote a vector of uncertain parameters in a given lin-
ear stochastic state model for a dynamic system. In the present
investigation, we will assume that a resides in the space of
actuator and/or sensor failures within a flight control system.
In essence, the a parameters can affect the model structure or
the noises entering it. Also, the continuous range of a is discre-
tized in order to provide a computationally feasible solution.
Define now the hypothesis conditional probability pi(t;) as the
probability that a assumes a value g, (for k=1, 2, ...,K), condi-
tioned on the observed measurement history to time #..:

pult) = Prob(a = a;| Z(1) = Z)) 33)

then it can be shown that p,(#;) can be evaluated recursively for
all k via the iteration [3], [4]:

Pt = i) a, -1 , ap, Zi)piltir)/
K

2 famla, Z(ii-I)(Zilaja Zi )y pfti1)- (34)
j=1

The measurement history of the random vector Z(,) is made
up of partitions z(z;)...z(t;) which correspond to the measure-
ment vectors available at the sample times ¢ ...#;. The realiza-
tion Z; of the measurement history vector has partitions z; ... z;.
The Bayesian minimum mean square error estimate of the
state is the probability weighted average [7], [8]:

K
x(t") = E{x(t) | Z(t) = Z3} = X xi(t pity) (35)
k=1

where x(¢;") is the state estimate generated by a Kalman filter
based on the assumption that the parameter vector equals ay.
More explicitly, let the model corresponding to a; be described
by (an “equivalent discrete-time model” for a continuous-time
system with sampled data measurements) [4], [11]:

xiltper) = Ot s txlt) + Biltu(t) +
+GtIwilt) (36)

z(t) = Hi(t) + vi(t) (37)

where x; is the state, u is a control unit, wy is a discrete-time
zero-mean white Gaussian dynamic noise of covariance Oyt
at each ¢, z is the measurement vector, and v, is a discrete-time
zero-mean white Gaussian measurement noise of covariance
Ry(t) at t;, assumed independent (and thus uncorrelated) of wy.
The initial condition x(z,) is modeled as Gaussian, with mean
X, and covariance Py, and is assumed independent of w; and
vr. Based on this set of models, the usual Kalman filter is
specified by the measurement update as follows:

Aty = H{)PLt)) HI(t) + Ri(t) (38)
K(t) = Put) H(8) 4 (1) (39)
Xt = (1)) + Kilt)lz: - Hil(t) xi(¢)] (40)
Plt") = P{ty) - Ki(ty) H(t) Pitr) (41)
and the time propagation relations:

Xiltrer) = Oiltyess LYt + Bitu(t) (42)

P(tr) = Pu(tir, 1) Pt )Pyt ) +
+ Gy) Qul) Gi(t). (43)

A 1 VISTA
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Fig. 2. Multiple model adaptive estimation block diagram.

From Fig.2 it is noticed that the multiple model adaptive es-
timation filtering algorithm is composed of a bank of K sepa-
rate Kalman filters, each of which is based on a particular
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value a,...ax of the parameter vector a, as depicted in Fig.2.
Therefore, when the measurement z; becomes available at time
t;, the residuals rft;)...rx(#;) are generated in the K filters as
shown by the bracketed term in Eq.(40), and used to compute
pity)...px(t;) via Eq.(34). Each numerator density function in
Eq.(34) is given by the following well-known relation [4]:

Sty a.z0on@i L aw Zigy = (17 1™ Axe)l )
-exp [-(172) (1) A (1)) (44)

where m is the measurement dimension and A4,(z,) is the resid-
ual covariance calculated in the kzA Kalman filter in Eq.(38).
The denominator in Eq.(34) is simply the sum of all the com-
puted numerator terms and thus is the scale factor required to
ensure that the pi(¢;)’s sum to one [2]. Thus, the filter prob-
abilities must satisfy two constraints. These are:

pt) 2 0 (45)
K

Zpdt) = 1 (46)
k=1

In operation, one expects the residuals of the Kalman filter
with the hypothesis that best matches the true system state to
have mean squared value most in consonance with its inter-
nally computed covariance, Ai(f;). The performance of the
algorithm depends on the existence of significant differences
in the characteristics of “correct” vs. “mismatched” filters’
residuals. Each filter should be tuned for best performance
when the true values of the uncertain parameters match the
assumed value for these parameters. The addition of substan-
tial amounts of the dynamics model, often used to guard
against filter divergence, should be avoided as it tends to mask
the differences between good and bad models. Although the
MMAE algorithm appears similar to the MMAC controller,
fundamental differences exist between the two algorithms. The
intent of the MMAE algorithm is to generate a composite
Xywae(t;) from each of the K elemental filter estimates as
shown in Fig.2. In the present investigation, we are compen-
sating for parameter uncertainties in B and H representing
actuator and sensor failures; a hard actuator failure is modeled
with a column of B going to zero, and a sensor hard failure is
represented by a row of H being zeroed. The multiple model
adaptive estimation algorithm produces a composite state es-
timate vector used by the flight control system.

3. MMAE-based control

The MMAE-based was selected over the MMAC-based
control for various reasons. In this investigation, the control
system was selected from existing control systems. Previous
efforts designed control systems with the objective of recon-
figuring the estimator and controller portions of the system
upon the isolation of a failure. The purpose of the present
investigation is to demonstrate the algorithm’s robustness and
emerging maturity by applying the algorithm to a full-scale
control system in use with the USAF. In addition, the primary
focus of this investigation is the detection and isolation of
failures, not reconfigurability of the control laws. (the
possibility of loss of control for some failure combinations
could be anticipated). Another important consideration for the

anticipated). Another important consideration for the selection
of the MMAE-based control is the demonstration of this tech-
nique on a modern fighter test aircraft. As mentioned earlier,
the residuals from each of the Kalman filters (see Fig.2), rep-
resenting a different hypothesized failure determine the
appropriate magnitude of the probability assigned to each filter.
Consequently, failures are detected and identified according to
the probability assigned to the filter.
4. Hierarchical modeling

The MMAE/MMAC algorithm provides flexibility in its
application to single and multiple failures. That is, given a
relatively small finite set of failure conditions, it might be
feasible to design an elemental controller for every failure
condition within the set. However, for a flight control system
application, this is not practical. In essence, modeling the sin-
gle and dual failures of K sensors and/or actuators, would
require [1 + K + (K!/(K — 2)!2!)] elemental filters, with one
no-failure filter, K single-failure filters, and KV/(K — 2)12!
dual-failure filters. An alternative method used in previous
flight control research involves a “moving bank” of (1 + K)
filters. This technique significantly reduces the computational
burden by requiring fewer elemental filters to be “on line” at
any given time. Figure 3 identifies the hierarchical structure of
the “moving bank” of filters.
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Fig. 3. Hierarchical modeling.

Note that at level 0, filters a; through ax correspond to the
single-failure filters. Filter a,, is the no-failure filter. The algo-
rithm continuously monitors the system with the (1 + K) Level
0 filters. Therefore, at the isolation of a single failure, the al-
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gorithm will activate the appropriate Level 1 bank of (1 + K)
elemental filters designed for the isolated failure alone, and
any other possible second failure. The addition of a no-failure
filter allows the algorithm to “back out” of the decision tree
structure and return to Level 0 in the event of a first misidenti-
fied failure, intermittent failure, etc.

For a multi-sensor system, the K local estimators and the
global estimator share the same a priori information on the
state x. Furthermore, x is assumed to be Gaussian with mean x
and variance M; v,(t;), i = 1,2,... K are independent Gaussian
vectors with zero-mean and variance R;. Let now the error
covariance of the local and global estimates be

P=E{x-x)(x-x)} (47
where x is the estimate of x. Then, we have the following
Lemma:

Lemma:
K
PI=¥YPK-DM' (48a)
i=1
K
Plx=3P x;—(K-1))M'x. (48b)
i=1
Proof:

Standard estimation results give

K
P'=M"+3H'R/'H, (49a)
i=1
Pl=M"+HRH, (49b)
K
x=x+PY H'R(z; - Hx) (49¢)
i=1
x=x+P; H R/ (z; — Hx). (49d)

Thus, in this particular case, if a hierarchical scheme of es-
timation is used, it is only necessary to transmit the local esti-
mates and error covariances to the higher level.

V. Simulation and discussion of the results

The purpose of this investigation was to construct a multiple
model adaptive estimator-based controller using a computer
simulation of the VISTA flight control system. The program
uses many subroutines, however, it should be noted that the
VISTA subroutine can be removed and replaced with any
other flight control subroutine. However, changing the subrou-
tine will require a change to the MMAE code since it is
unlikely that the number of sensors and actuators would be
equivalent. The flight control system in this investigation dif-
fers from the full VISTA slight control system by the follow-
ing aspects:

1) Dynamics above 40 rad/sec are ignored (secondary dy-
namic effects).

2) First-order models replace fourth-order actuator models

3) The flight control system is modeled as a continuous sys-

tem using Euler integration techniques instead of a 40 Hz
digital controller. Eventually, the sampled data nature of the
controller will be captured.

The flight control system does include both the longitudinal
and later-directional axes, gain scheduling, position and rate
limits (in the controller software as well as in the physical
hardware implementation), angle-of-attack limiting, the lead-
ing edge flap controller, trim effects, command and position
breakouts, surface biases, and the yaw structural filter, as in
the full VISTA flight control system. The aerodynamic model
is linearized about a flight condition about a flight condition of
0.4 Mach at 20,000-ft. The model includes the pitch attitude,
velocity, angle-of-attack, pitch rate, sideslip angle, roll angle,
roll rate, and yaw rate. The control vector includes the left and
right stabilator positions, the left and right flaperon positions,
the rudder, and the leading edge flap. Since the model is lin-
earized about a selected flight condition, the thrust is constant
in this perturbation model. The performance analysis of the
MMAE-based control algorithim begins by inducing hard
modeled failures, soft modeled failures, and finally unmodeled
failures. Following the evaluation of single-failure perform-
ance, dual-failure scenarios were investigated. Initially, the
time between the first failure and the induction of the second
failure will be large. As confidence in he ability of the system
to isolate both failures increases, the time between the failures
will be reduced.

Undoubtedly, the most obvious limitation throughout this
investigation is the use of a linearized VISTA aerodynamic
model. However, since the interest in this investigation lies
within the area of failure detection and isolation, as opposed to
control, this is not considered a restrictive limitation. Another
limitation is the use of reduced order actuators, which allow a
simpler implementation in the model. Frequency response
characteristics for first vs. fourth-order actuators are essen-
tially equivalent for the frequencies of interest. The Dryden
wind model was simulated using the appropriate shaping fil-
ters driven by white Gaussian noise of the appropriate strength
Within the elemental filters, sensor dynamics were presented
as essentially instantaneous, with the second output being
corrupted by discrete-time white Gaussian noise of appropriate
covariances. One of the strengths of this investigation is its
realistic models, particularly of the VISTA flight control sys-
tem. The limitations listed within this investigation do not
seriously bound the validity of the results. In the present inves-
tigation, position and rate limits for the VISTA aircraft were as
shown in table 4.

Table 4. Actuator position and rate limits.

Control Surface Limits Units
AS - Stabilator +21.0 [deg]
+60.0 [deg/s]
OF - Flaperons +20.0 [deg]
-23.0
+61.0 [deg/s]
O6R — Rudder +30.0 [deg)
+120.0 [deg/s]
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Fig. 4 shows the modeled states.
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Fig. 4. States for no failure scenario.

Specifically, Fig.4 contains the modeled states. The algo-
rithm correctly identifies the no-failure filter from the starting
probability of 0.75 within 0.25 seconds. The probability grows
from 0.75 to 0.988 (maximum) within this time. The excita-
tion of the pulse forced the residuals, corresponding to each of
the filters with incorrect hypotheses, to grow large as com-
pared to their internally computed covariances. In contrast, the
residuals of the filter with the correct hypothesis fall within
the 36 bounds. The MMAE algorithm assigns probabilities
based upon the residuals characteristics. Except for a minor
probability dropout at 5.95 seconds, the probability is locked
on the fully functional (i.e., no failure) filter. The minor prob-
ability dropout occurs near the six-second pulse, a time at
which ambiguity arises due to the application of the pulse. The
pulse excites the system, however, the pulse also provides a
transient. The dropout at 5.95 seconds is picked up by the
angle-of-attack failure filter. This phenomenon is consistent
throughout the hard- failure scenarios. It is an anomaly caused
by a 3o noise spike which violates the 30 bounds represent-
ing he internally computed covariance and causes a momen-
tary loss of probability, which happens to be picked up by the
angle-of-attack failure filter. Note the probability spike is mo-
mentary, consistent between cases, and the algorithm instantly

returns the probability to the correct filter, namely, the fully
functional aircraft filter. In Fig.4, the pulse dither signal can
clearly be observed at 0.3 and 0.6 seconds. All of the variables
are centered around zero with the exception of the normal
acceleration (centered at 1-g). These variables are relative to
the trim conditions. The trim angle-of-attack is 10.06°, at the
trim pitch angle. The trim velocity is 414.8 ft/sec. All other
trim states are zero with the exception of the trim normal ac-
celeration which is 1-g. Finally, a small change in the pulse
amplitude can alter the ramping with no change in perform-
ance, and the ramping can be easily controlled.

VI. Conclusion

A multiple model adaptive estimation algorithm is applied
to the NF-16D variable stability in-flight simulator test aircraft
(VISTA) at a low dynamic pressure flight condition (i.e., 0.4
Mach at 20,000-ft.). A complete F-16 flight control system is
modeled containing the longitudinal and lateral-directional
axes. Single and dual actuator and sensor failures were simu-
lated including the following: complete actuator failures, par-
tial actuator failures, complete sensor failures, increased sen-
sor noise, sensor biases, dual complete actuator failures, dual
complete sensor failures, and combinations of actuator and
sensor failures. Failure scenarios are examined in both maneu-
vering and straight and level flight conditions. Single scalar
residual monitoring techniques were evaluated with sugges-
tions for improved performance. A Kalman filter is designed
for each hypothesized failure condition.

Based upon the projected cost of future military aircraft,
sufficient motivation exists within the Air Force to increase
the survivability of present and future aircraft. The
MMAE/MMAC algorithm may fulfill that need. The applica-
tion of this algorithm to a sophisticated flight control system
currently in service with the Air Force provides a realistic and
valuable test. In this investigation, the construction of the
MMAE/MMAC algorithm demonstrated the hierarchical
structure utilized in addressing multiple failures, was dis-
cussed. The assignment of elemental controller probabilities
using a modified Bayesian form allows the algorithm to con-
trol outputs in an effort to address unmodeled failures. Addi-
tional voting techniques may be necessary to resolve ambigui-
ties in the detection and isolation of failures. A large number
of questions remain to be answered concerning the algorithm’s
ability to isolate single and multiple failures, distinguish be-
tween simultaneous failures, and differentiate between longi-
tudinal and lateral directional failures.

Finally, in this investigation thirteen elemental Kalman fil-
ters are designed encompassing: a no failure filter left stabila-
tor failure filter, a right stabilator failure filter, a left flaperon
failure filter, a right flaperon failure filter, a rudder failure
filter, a velocity sensor failure filter, an angle-of-attack sensor
failure filter, a pitch rate sensor failure filter, a normal accel-
eration sensor filter, a roll rate sensor failure filter, a yaw rate
sensor failure filter, and a lateral acceleration sensor failure
filter. The blended state estimates are sent to the VISTA flight
control system. A hierarchical “moving bank” structure is
utilized for multiple failure scenarios. White Gaussian noise is
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included to simulate the effects of atmospheric disturbances,
and to simulate the effects of sensor noise. Each elemental
Kalman filter is compared to the truth model with a selected
failure. Filters with residuals that have mean square values
most in consonance with their internally computed covariance
are assigned the higher probabilities.
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