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Stability for Nonlinear Systems with Slowly Varying and Small

Jump Inputs

Jietae Lee, Doe Gyoon Koo, and Ho Cheol Park

Abstract: Stability theorem for nonlinear systems with slowly varying inputs is extended to systems with slowly varying and small

jump inputs.
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L. Introduction
Consider a nonlinear system

x(t) = f(x(t),u(t)), x(0); given, t=0 €y

Where x(t) and u(t) are the n state and m input vectors, respec-
tively. If the inputs vary slowly (that is, the Euclidean norm of
u(t) is small) and the system has an isolated equilibrium
defined by x =h(u) for each uel (a compact subset of
R™), we can analyze the system (1) by treating u(t) as con-
stant parameters. It is reasonable to expect that the slowly
varying system (1) will posses a property similar to the frozen
system of each fixed input u.

One example of such system is a two time-scale system, in
which a fast subsystem is perturbed by the slowly varying
states of a slow subsystem [6]. We can design the fast subsys-
tem under the assumption that the states of the slow subsystem
are constant parameters. Another example is a contro! system
designed by the extended linearization method {7] or by the
pseudo linearization method [8]. In this case the command
signals and load disturbances are the slowly varying inputs.
Gain-scheduled control systems are also included in this class.
Stability of the system (1) with slowly varying inputs is stud-
ied by some authors via the Gronwall-Bellman inequality and
the Lyapunov method [1]-[4]. Bounds on the norm magnitude
of u(t) under which states of the system remain bounded
are obtained. Since the derivative of u(t) is used in the analysis,
step changes in the inputs can not be handled. Here, we are to
show that stability theorem via the Lyapunov method [4] can
be casily adapted to permit step changes in the inputs. Since
the command signals or load disturbances in contro! systems
designed with the extended linearization method can often be
step changes [9], it would be important in practice.

IL. Result
Stability theorem which can handle small jump changes in
the inputs is investigated. In the sequel, as a magnitude of a
time varying vector (pointwise in time), the Euclidean norm is
used and denoted by “0” .
Assume that ([3] and [4])
[H1]: f(x,u) is twice continuously differentiable.
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[H2]: For every u €I . the equation f(x,u)=0 has a twice
continuoucly differentiable isolated root x=h(u). That
is, f(h(u),u)=0 and h(u) is twice continuously differ-
entiable.

[H3]: For each fixed uel" and
z=x-h(u)eB, ={zeR"| ”ZH <r} ,the frozen

system,;

z(t) = f(z(t) + h(u),u) 2

has a Lyapunov function V(z,u) such that

el = Vi v <ol ¥
Mf(z +h(u),u) < —C3||Z“2 @
0z
oV(z,u)
2 <c.fd] ®
oV(z,u)
20 <ol ©

Assumptions [H1] and [H2] are about smoothness of the
function f(x,u) and the steady-state solution x=h(u). Assump-
tion [H3] is about the quadratic stability at each steady-state.
Instead of the assumption [H3], we may use more explicit
eigenvalue condition ([2] and [3]) such that real parts of all the
eigenvalues of Of(x,u)/0x atany uel and x =h(u)
are less than —o(c > 0). Lemma due to Hoppendieadt [1]
shows that the assumption [H3] is implied by the above eigen-
value condition with sufficiently small B, [4]. Here, we use
[H3] for simplicity.

From the smoothness conditions of [H1] and [H2], we have
for uel” and z=x-h(u)eB,:

of (x,
(;Xu) <L, )
of (x,
g;u) <L, (®)
¢ch
(e, ©

Transforming the state variables to z(t) = x(t) - h(u(t)) , the
system (1) becomes
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ah(U( ) .

2(t) = £(z(t) + h(u(t)), u(t)) - uty (10

Stability bound on "u(t)" can be obtained from that the
function V(z,u) of [H3] become a Lyapunov function still for
the system(10). Since the time derivative of u(t) is used, step
changes are not permitted. For the differentiation free condi-
tion, we introduce another transformation as

2(t) = x(t) ~ h(u, (1) (n
u(t) = upy (8) +u;(0) (12

Where u, (t) and u;(t) represent differentiable slowly
varying components and small jump components of u(t), re-
spectively. Then the system (1) becomes

2(t) = £(2() + h(up (), U (8) + (1) - ah(“m“”u A (13)

m
Stability bounds on up(t) and u;(t) are investigated
through the method very similar to [4] and [5].

Theorem 1: Consider the system which satisfied the assump-
tions [H1]-[H3] and

|2(0) = x(0) - h(u,, (0))] < e, /¢, (14)
o ] < & (15)
“uj(t)||S82, t>0 (16)

If, for some positive 8<1,

(c4L; +0rcsq/c; /¢, g +c4Lae, <Bresyfc /ey (17)

Then the solutions of system (1) are uniformly bounded for
t >0 and uniformly ultimately bounded with an ultimate
bound

cy(Lsg; +Lye,)
B(c; —cs¢y)

b= (18)

Proof: We show that V(z,u,) of [H3]is a Lyapunov func-
tion for the system (13). The time derivative of V(x,up,) is

oV(z,uy) 34 aV(z,u,) N

v =
(z,um) Fe 2.
dV(z,u Shiu,,) . oV(z,u,) .
- (bz "‘)[f(z+h(um),um+uj)——a-$um]+—au—m——um
aV(z,u,) of (z+h(u, ), u) oh{u,,) .
= f(z+h(u,)uy, )+ ————F—— u,——u
oz l: " " ou ue[uy, . up+u] aum "
+ 6V(z,um)ﬁm
du

m

< —c;]]znz +(c4La6, +c4L35|)“z|]+c55lnz“Z

(19

For “z“ >b,
V(z,u,,) < (—c3 +4(Lyg; +Lygy) / b+ csz‘:,)”zn2
=—(1-0)(c; - 0581)”2“2

Since €& <c¢3/cs from (17), V(Z,um)is negative defi-
nite for "Z“ >b. From (17) and (18) we have b <r1,/c;/¢c,
and hence the theorem follows. g.e.d.

We may choose u,(t) and 8 which will provide better
stability bounds. In the case of no jump changes in the inputs
u(t), €, can be chosen as zero and the theorem is reduced to
that of [5]. Sometimes it is also beneficial to introduce
un(t) and u;(t) for no jump changes in the inputs. For
example, small fast triangular wave inputs produce very large
”il(t)“ and previous theorems may fail to provide stability.
Instead, the proposed method can be applied with choosing
U, (t) as the average values of the triangular wave inputs.
As in Lawrence and Rugh [3], the stabillity bouned of (15)
and (16) may be improved to the time averaging ones.
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