DOI QR코드

DOI QR Code

Sc첨가한 Al-Mg 합금의 고온변형 거동에 미치는 결정립 크기의 영향

Effects of Grain Size on High Temperature Deformation Behavior of Sc added Al-Mg Alloy

  • 우기도 (전북대학교 신소재공학부, 공업기술연구센터) ;
  • 김석원 (전북대학교 신소재공학부, 공업기술연구센터) ;
  • 김학신 (전북대학교 신소재공학부, 공업기술연구센터) ;
  • 양창호 (전북대학교 신소재공학부, 공업기술연구센터) ;
  • 박희찬 (전북대학교 신소재공학부, 공업기술연구센터) ;
  • ;
  • 박경태 (한밭대학교 신소재공학부)
  • Woo, K.D. (Division of Advanced Materials Engineering & the RICT, Engineering Research Institute, Chonbuk National University) ;
  • Kim, S.W. (Division of Advanced Materials Engineering & the RICT, Engineering Research Institute, Chonbuk National University) ;
  • Kim, H.S. (Division of Advanced Materials Engineering & the RICT, Engineering Research Institute, Chonbuk National University) ;
  • Yang, C.H. (Division of Advanced Materials Engineering & the RICT, Engineering Research Institute, Chonbuk National University) ;
  • Park, H.C. (Division of Advanced Materials Engineering & the RICT, Engineering Research Institute, Chonbuk National University) ;
  • MIURA, Y. (Department of Materials Science and Engineering Research Institute, Chonbuk National University) ;
  • Park, K.T. (Department of Matallurgical Engineering, Hanbat National University)
  • 발행 : 2002.09.01

초록

High temperature tensile test has been performed at $450^{\circ}C$ at different strain rate with various grain size due to different reduction rate of Al-4wt%Mg-0.4wt%Sc alloy which is known to be one of useful superplastic alloys. The grain size of Al-4wt%Mg-0.4wt%Sc alloy is $67~100\mu\textrm{m}$ which is courser than that of the alloy which is commonly used as the superplastic material. The total elongation of the Al-4wt%Mg-0.4wt%Sc alloy is strongly dependent on the average grain size, and is a linear function of the inverse average grain size for the present alloy.

키워드

참고문헌

  1. J. Gilbert Kaufman, Properties of Aluminum Alloys, ASM, 109-161 (1999)
  2. A.K. Vasudevan and R.D. Dotherty, Aluminum Alloys-contemporary Research and Applications, Academic Press Inc., London, 13-17 (1989)
  3. M.R. Drusy and F.J. Humphreys, Acta Met., 34, 2259 (1986) https://doi.org/10.1016/0001-6160(86)90171-9
  4. O. Roder, O. Schauerte, G. Lutjering and A. Gysler, Materials Science Forum, 217 -222, 1835 (1996) https://doi.org/10.4028/www.scientific.net/MSF.217-222.1835
  5. T.G. Nieh, R. Kaibyshev, L.M. Hsiung, N. Nguyen and, J. Wadsworth, Scr. Met ., 36,1011 (1997) https://doi.org/10.1016/S1359-6462(96)00479-4
  6. Yi-Lei Wu, F.H. (SAM) Froes, Cheng gong Li, and Alex Alvarez, Metall. Trans. 30A, 1691 (1996)
  7. M.Ye. Drits, L.B. Ber, Yu.G. Bykov, L.S. Toropova and G.K. Anastaseva, Fiz. Metal. Metalloved., 6, 1172 (1984)
  8. L.S. Toropova, Yu.G. Bykov, V.M. Lazarenko and Yu. M. Platov, Fiz. Metal. Metalloved., 54, 201 (1982)
  9. Ralph R. Sawtell and Craig L. Jensen, Metall. Trans. 21A, 421 (1990)
  10. T.G. Nieh, L.M. Hsiung, J. Wadsworth, and R. Kaibyshev, Acta Metall. 46, 2789 (1998)
  11. Taiping Lou, Post Doc. Report, Chonbuk National University, Korea (2002)
  12. T.P.Lou and K.D.Woo, Mater. Lett., 52, 374 (2002) https://doi.org/10.1016/S0167-577X(01)00426-8
  13. O.D. Sherby and P.M. Burke, Prog. Mater. Sci. 13, 325 (1967)
  14. H. Oikawa, K. Sugawara, and S. Karashima, Trans. JIM, 19, 611 (1978) https://doi.org/10.2320/matertrans1960.19.611
  15. K.L. Murty, F.A. Mohamed, and J.E. Dorn, Acta Mater. 20, 1009 (1972) https://doi.org/10.1016/0001-6160(72)90135-6
  16. H. Kokawa, T. Wantanabe, and S. Karashima, Phil. Mag. A., 44(6),1293 (1981)
  17. O.D. Sherby and Wadsworth, J. Mater. Sci. 1, 925 (1985)
  18. Dong Hyuk Shin, Chong Soo Lee and Woo-Jin Kim, Acta Mater. 45, 5195 (1997) https://doi.org/10.1016/S1359-6454(97)00185-7
  19. O.D. Sherby and Wadsworth, Prog, Mater. Sci. 33, 166 (1989)