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Abstract. An optimization of the M/M/1 queue with impatient cus-
tomers is studied. The impatient customer does not enter the system
if his or her virtual waiting time exceeds the threshold K > 0. After
assigning three costs to the system, a cost proportional to the virtual
waiting time, a penalty to each impatient customer, and also a penalty
to each unit of the idle period of the server, we show that there exists a
threshold K which minimizes the long-run average cost per unit time.
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1. INTRODUCTION

We, in this paper, consider the M/M/1 queue with impatient customers. The
customers arrive according to a Poisson process with rate A > 0 and the service
times of customers are independent and exponentially distributed random variables
with mean p. The impatient customer is the one who leaves the system without
being served if he or she has waited for more than a period K > 0. In the analysis
of virtual waiting time, however, the impatient customer can be considered as the
customer who enters the system only when his or her waiting time does not exceed
K. A sample path of the virtual waiting time of the M/M/1 queue with impatient
customers is shown in Figure 1.

The queue with impatient customers has been studied by many authors. Da-
ley(1965) and De Kok and Tijms(1985) obtained the limiting distributions of the
virtual waiting time for M/G/1 and G/G/1 queues. However, their results were
restricted to some special cases. Recently, Lee and Lim(2000) and Bae, Kim and
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Figure 1. A sample path of the virtual waiting time

Lee(2001) have obtained the explicit and complete formulas for the busy period of
the server and the limiting distribution of the virtual waiting time.

In this paper, we assign three costs to the system, a cost proportional to the
expected virtual waiting time, a penalty to each impatient customer, and another
penalty to each unit of the idle period of the server. We, then, find the value of K
which minimizes the long-run average cost. To do this, in Section 2, we obtain the
explicit formulas for the expected busy period, the number of impatient customers
during a busy period, and the expected virtual waiting time. In Section 3, after
computing the long-run average cost per unit time, we show that there exists an
optimal value of K.

Our result can be directly applicable when the queue is a transmitting station
in a network and the customers are now the sets of data. The transmitting station
collects the sets of data from other stations and sends them continuously to the main
station. In this case, the service time of the customer is now the length of the data
and the virtual waiting time is the pile of data that not been sent. If the current
amount of data not being sent exceeds the threshold K, the incoming sets of data
are no longer admitted until the amount of data presented in the station becomes
less than K again. In this transmitting station, it is important for the manager to
find the optimal value of K.

2. INTERESTING CHARACTERISTICS

In this section, we calculate some characteristics of the system, the expected busy
period, the number of impatient customers during a busy period, and the expected
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virtual waiting time, which are needed later to find the long-run average cost per
unit and of themselves interesting.

2.1 Busy Period

Lee and Lim (2000) have obtained the explicit formula of the expected busy
period starting from level (0 < z < K) by using the optional stopping theorem of
matingale as follows :

_ Z(z,8,p4, M K)
E(Bs) = (A —1)(e 5K — sy — 1)spue—sK’
where
Z(z,8, 5, A\, K) = Mu?[(sp + 1)spe™5% 4 spu(e™5K — s,u 2) —1]]
—(e™*K — sp— D[zspe™ K — K(e7** = 1)(su + 1)]

with s = 2=1 Here, z is the service time of the first customer after an idle period.
Let B be the busy period which are not conditioned on z, then, by the double
expectation formula,

E(B) = E[E(B|X)]

= / E(B e #d:c-!—/ [/L-%—EBK)]'ue »dz

pll - /\ueSK ]

T (2.1)

Observe that the amount of service time exceeding K, when z > K, is still an
exponential random variable with mean p due to the memoryless property of the
exponential random variable.

2.2 Number of Impatient Customers

Let N be the number of impatient customers during a busy period. Lee and
Lim(2000) obtained the expectation of the same number when the busy period
started at (0 < z < K), which is given by

PE P

E(N:E) = (1—_—15‘[}??’

(e —1)(sp +1)
e sK —su—1

where Pf = with Pf =1 — Pg .
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Conditioning on the service time of the first customer gives

E(N) = E[E(N|X)]

= / E(N, eudz—i—/ [(z — )/\+E(NK)]/‘E€ “dz

Me ™ — dpe ™ n ) + s)\u s)\ue_% — e 4 Ao w
se—sK se—sK

= aue’K. (2.2)

Notice that E(N) = Ay when K = 0, which is the case when at most one customer
is allowed in the system.

2.3 Virtual Waiting Time

Let V be the virtual waiting time. The limiting distribution of the virtual waiting
time process was found by Bae, Kim and Lee(2001), which was given by

1— Ape’®
1— (\p)2esk’
(1= dp)e’® _u

1— ()\,U,)QGSK e
From this, we can calculate the long-run average virtual waiting time, E(V) say, as
follows :

F(z) = 0<z< K

F(K+y)=1- y>0.

BV) = /Oooﬁ‘(x)dx

- / Pz da:+/ F(K +y)d

Au(esE — 1) — sK(Ap)?es® 4 A1 = dp)esK
(1 = (Ap)%esK) 1~ (Au)2es®

(Ap)?eX[2 — Mu] — Ay — sK ()2 X
s[1 — (Ap)?esK]

Remarks (i) When K = oo, that is, when there are no impatient customers,

A
1—-p

E(V) =

which is a well known result in the ordinary M/M/1 queue.
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(ii) In the case that K =0,

4. OPTIMIZATION

We, in this section, find the optimal value of K after calculating the long-run
average cost per unit time. Let C; be the holding cost per unit time of a unit
amount of service time. Note that in the long-run, the average holding cost per
unit time will be C1 E(V'). Let C be the penalty to each impatient customer whom
we lost without serving. Let C3 be the penalty for each unit of the idle period of
the server. Define C(K) as the long-run average cost per unit time. Then, by the
renewal reward theorem [Ross(1996), p.133], C(K) is given by

Eltotal cost during a cycle]
E{length of a cycle]
E(N)Cz + 1C3
E(B) + %

[(Ow)?e X (2 = Mp] = M = sK(Wp)®e*K]Cy
s[1 = (Ap)?esK]

C(K) =

= E(V)C,+

[/\2/11651(02 + Cs)(1 — Ap)

24
1 — (/\;L)QeSK ( )
Differentiating the above equation with respect to K gives
A(K)
4 —
) = A= owerp
where
AK) = [$°(Ow)?%e™ — 252(pu)3e™® + s2(Op) e — 3K (Au)2es K]0y

—st(p)2esECy — N2t B . (2.5)

After some tedious algebras, we can show that
i) When p?Cy > Cs + pCs,
A(K) >0, for all K > 0 (see appendix), and hence, C(K) is minimized at K = 0.
ii) When /ﬂCl < Cy + puCs,
A(0) < 0,limg 00 A(K) = 0+, and hence there exists a value K* > 0 which min-
imizes C(K). K* is the solution of equation A(K) = 0 which can be found by a
routine numerical calculation.
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Remark Notice that C is the cost related to serving customers and Cy and Cjy
may be considered as the penalties of not serving customers. Hence, the condition
p?C1 > Cy + uCs implicates that the serving cost of customers is relatively larger
than the penalty of losing customers, in which case it is optimal to serve as small
number of customers as possible. Otherwise, that is, when p2C; < Cy + uCs, there
exists an optimal value K*(0 < K* < co) minimizing the long-run average cost.

The following two figures show the graphs of A(K) in both cases. In Figure 3,
we can see that K* is about 7.4.
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Figure 2. u?C, > Cy+uC3, (A=0.1,u0=5,C; =1,C, =10,C; = 3)
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Figure 3. II'ZCl < Cy + uCs, ()\ =01,p=5,C1 =1,C, =50,C;3 = 5)
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APPENDIX
If 42Cy > Co + pCs, then, A(K) > 0, for all K > 0.
proof ) Observing that
—34()\[L)265K(02 + /1‘03) > '~S4(>\M)2CSK,U,201,
we can see that

AK) 2 [s*Ow)?e™ =28 0w)’e™™ + () te® K — 5P K (n)?e]Cy
_34(>\N)QGSKH201

— 2
82(/\/1)46251(01 —83K(/\;,L)268K01 _ 82(/\/.1,)4651(01, since 32 _ ()\,u# 1)

It

[s3(Mw)iKes® — s3(au)2Ket K]0
$[(Ow)? = 1)’ Ke ™ 0y
0

where the third inequality comes from the fact that e > 1 + sK and the fifth
inequality follows from the fact that s > 0 & Ap > 1.
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