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Abstract. This paper focuses on how modern data mining can be integrated with
real-time relational databases and commercial data warehouses to improve reliability
in real-time. An important issue for many manufacturers is the development of
relational databases that link key product attributes with real-time process parameters.
Helpful data for key product attributes in manufacturing may be derived from
destructive reliability testing. Destructive samples are taken at periodic time intervals
during manufacturing, which might create a long time-gap between key product
attributes and real-time process data. A case study is briefly summarized for the
medium density fiberboard (MDF) industry. MDF is a wood composite that is used
extensively by the home building and furniture manufacturing industries around the
world. The cost of unacceptable MDF was as large as 5% to 10% of total
manufacturing costs. Prevention can result in millions of US dollars saved by using
better information systems.
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1. INTRODUCTION

Data Mining and Knowledge Discovery have become active areas of research
attracting people from many different disciplines, e.g., computer science, industrial
engineering, statistics, operations research, etc. Data mining toolkits are now
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commercially available, and such toolkits are emerging more in industrial applications.
Many organizations have been labeled “data-rich” and “knowledge-poor” (Chen 2001).
Data mining enables complex manufacturing processes to be better understood by
examining the patterns in data related to the previous behavior of a manufacturing process
(Chen 2001).

This paper addresses the challenge of how data mining can be integrated with real-
time relational databases and commercial data warehouses to improve reliability in real
time. We believe that for data mining to be more widely adopted by the forest product
industry, and other industries globally, data mining toolkits must be developed in the
context of real-time relational databases, using affordable commercial data warehouses.
The cost benefits, plus increased product reliability, from data mining techniques may be
highly significant and offer improved, stronger competitiveness for companies in any
industrial sector.

An important issue for many manufacturers is the development of relational
databases that link key product attributes with real-time process parameters (e.g., Yang
1986). Needed data for key product attributes in forest product manufacturing may be
derived from destructive reliability testing. Most destructive samples are taken at periodic
time intervals during manufacturing which creates a time-gap between key product
attributes and real-time process data. This time-gap may hinder the real-time decision-
making capabilities of operators.

A case study is briefly summarized for the medium density fiberboard (MDF)
industry. MDF is a wood composite that is used extensively by the home building and
furniture manufacturing industries around the world. The objective of the case study was
to develop an automated relational database from which statistical data mining methods
could be used to better predict the internal bond (strength) of MDF and improve reliability.
The cost of unacceptable MDF was as large as 5% to 10% of total manufacturing costs.
Better information systems can prevent unacceptable reliability and result in millions of
US dollars saved.

2. METHODS
2.1 Mass Data Storage

Wonderware® Industrial SQL Server 7.1 was used as the data warehouse of process
data. Other software packages could be used. This was picked due to its relatively lower
cost; thus, liker adoption by forest product manufactures concerned with cost factors and
international competition. A smaller subset of 230 process variables was collected from
the data warehouse of approximately 2,850 process variables.

All process data are stored in the data warchouse based on “delta” change, i.e., any
change in the process variable is written to the data warehouse based on leading-edge
detection. All process data were stored on a PC server, which was separate from the PC
server that stored destructive test data.

2.2 Automated Relational Database
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The relational database was the Cartesian product of two sets S; and S,, consisting of
ordered pairs (a, €)) of ain S; and ¢;in Sy, 1.e,,

SixSy = {(a,¢)]|acS ande e Sy, 1 <j <230} (1)

where S; is the destructive test element a, namely internal bond (in pound per square
inches: p.s.i.). S, are the process elements e; where 1 <j <230. Examples of process data
elements e; were: fiber-mat moisture, fiber-mat weight, line speed, press position-1
temperature, press position-1 pressure, product type, MDF thickness, etc. The relation in
the Cartesian product of the two sets was the time-stamp associated with the event of a
destructive sample. All data were time-ordered using the time-stamp of the destructive
test event. Partitions of the Cartesian product of the two sets were developed based on
product type. Product types were based on MDF thickness (inches), panel width (inches),
panel length (inches), and panel density (Ibs/ft’). An example of the relational databases
is illustrated in Figure 1.
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Figure 1. Example of 34 records and 10 variables in relational database.

The creation and updating of the relational database was automated. The destructive
database and process data were on separate PC servers on a common LAN. Creation and
updating were performed using Microsoft SQL 7.0 encoding and Microsoft SQL 7.0
automated functionality, e.g., DTS Package and SQL Enterprise Manager “Jobs.” The
Microsoft SQI. 7.0 DTS Package was used to link PC servers. Microsoft SQL 7.0 SQL
Enterprise Manager “Jobs” were used to schedule and execute Transact SQL encoding.
The Transact SQL encoding was used to create the relational database in a Microsoft SQL
7.0 table structure. The Microsoft SQL table was updated within 15 minutes after the
destructive tests. The destructive test results were merged with a temporary Microsoft
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SQL Table that contained data for 230 process variables corresponding to the time-stamp
from the most recent destructive test.

2.3 Data Quality

Current commercial relational database management systems such as Microsoft SQL
Server 7.0 and their underlying relational model are based on the assumption that data
stored in the databases are correct (Ballou et al. 1998, Wang et al. 2001). The assumption
that the join operation in the SQL encoding queries produced correct data was validated
using the Attribute-Based Model (Wang et al. 2001). The Attribute-Based Model was used
to facilitate cell-level tagging of data quality. Integrity rules were used during the SQL
query process which relied on quality indicators characteristic of the data, e.g., cells with
null values noted, internal bond greater than zero and less than 300 p.s.i., line speed
greater than zero and less than 150 ft./min., fiber mat moisture great than zero and less
than 20%, etc. An important issue related to data quality was the synchronizing of time
clocks on the destructive testing PC server and the process data server. The servers were
checked everyday at 12:00 a.m. for proper time synchronization.

2.4 Predictive Modeling

The linear regression model is of the form:
Y=XB+¢ 2)

where Y is an (n x 1) vector of observations, X is an (n x p) matrix of known form, B is

an (p x 1) vector of parameters, € is an (n x 1) vector of errors.

A pre-selected Foyr of & = 0.05 was use as a critical value (Myers 1989). Forward
selection multiple linear regression methods were used to develop the models, but
backward and mixed yielded the same final “best” models. The coefficient of
determinations (R?) ranged from 0.77 to 0.97. The predictive models were developed in
the spirit of maximizing R?, (adjusted R*), maximum R? subject to the principle of
parsimony (i.e., fewer predictor variables being used as possible), minimum mean square
residual, VIFs < 10 (Variance Inflation Factor), no pattern in residuals, minimum PRESS
(Prediction Sum of Squares), Mallow’s Cp =~ p, and residual plots with homogeneous
variance (Draper and Smith 1981). This approach produced very practical, easily
implemented first order approximations. Predictive models were not possible for all
product types in the case study. However, predictive models were developed for product
types that comprised about 65% of the producer’s annual production. See the next section
for more details.

3. EXPLORATORY CASE STUDY AND RESULTS

The case study was conducted at one of the larger producers of medium density
fiberboard (MDF) with a capacity in excess of 100 million f*. The producer has a
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continuous press which has a wide variety of MDF products ranging in thickness from »2”
to 1” and densities from 40 lbs/ft® to 48 Ibs/ft’. The producer is considered an industry
leader in quality and productivity.

Multiple linear regression models were developed for three products that represented
65% of the manufacturer’s annual production. A multiple linear regressions for 5/8” thick
MDF is as follows (Figure 2):

Y = Internal Bond = 706.10 3
- 12.40 (Actual Position Press Frame 14 Left Side)
+ 0.51 (Actual Position Press Frame 03 Left Side)
- 1.02 (Inside Mat Temperature)
- 1.00 (Actual Position Press Frame 19 Left Side)
+ 0.30 (Resin Flow)
- 0.75 (Actual Position Press Frame 05 Right Side)
- 10.59 (Moisture Content at Forming Out-feed)
+ 0.12 (Pre-Press Outlet Right Pressure).

where, R,” = 0.96, R? = 0.97, PRESS = 220.91, Root MSE = 2.36, F = 60.48 and n = 27.

150 7 ————

— O — Actual 1B
—@— Predicted 1B

140

130 A

120

Intrenal Bond (psi)

110

100 LIS B | T T T T T T T T T T T T T T T T T T T T T T
1 3 5 7 9 M1 13 15 17 19 29 23 25 27

Sample Number

Figure 2. Actual and predicted internal bond for model in equation (3)

Summary of fit and analysis of variance statistics are presented in Table 1. The
parameter estimates, standard errors, t-ratios, p-values and VIF statistics are presented in
Table 2.
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Table 1. Summary of fit and analysis of variance statistics for equation (3)

R-square 0.9661

R-square adjusted 0.9550

Root Mean Square Error 2.3623

Mean of Response 121.25

Observations . 27

Source DF Sum of Squares | Mean Square F Ratio

Model 8 2700.3755 337.547 60.4862

Error 17 94.8696 5.581 Prob >F
Total 25 2795.2451 <0.0001

Table 2. Parameter estimates for equation (3)

Term Estimate | Std Error T ratio Prob>|t| VIF
Intercept 706.10 52.19 13.53 <0.0001 -
Actual Position Press 0.51 0.07 7.77 < 0.0001 1.90
Frame 03 Left Side
Inside Mat -1.02 0.14 -7.33 < 0.0001 1.20
Temperature
Actual Position Press -1.00 0.15 -6.59 < 0.0001 3.07
Frame 19 Left Side
Resin Flow 0.30 0.05 5.49 < 0.0001 1.72
Actual Position Press -0.76 0.22 -3.37 0.0036 1.33
Frame 05 Right Side
Moisture Content at -10.59 4.04 -2.62 0.0179 1.69
Forming Out-feed
Pre-Press Outlet Right 0.12 0.07 1.76 0.0965 1.86
Pressure

Residuals for equation (3) are presented in Figure 3. There was no apparent
systematic pattern in the residuals for equation (3). The predicted values for internal bond
for test validation values are presented in Figure 4. The predictions of test validation
values indicated that the model in equation (3) is helpful for predicting the internal bond
for MDF based on the listed terms.
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Figure 4. Predicted internal bond for data set and test values for equation (3)

Benefits of these first order predictive models for MDF manufacture are preventing
manufacturing defects, minimizing manufacturing costs and maximizing throughput. The
key and most obvious benefit of a predictive model is its ability to prevent a future failing
internal bond, i.e., an internal bond below the customer’s minimum specification. Given
the two to three hour time period between destructive tests in most MDF manufacturing
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situations, a substantial amount of failing MDF production may be avoided if a predictive
model can predict the failures. The second benefit of a predictive model may be realized
by raw material minimization and process optimization. If a predictive model can
accurately predict internal bond, raw material inputs in the manufacture of MDF may be
minimized. Examples of raw materials in MDF manufacture that are significant
manufacturing costs are wood fiber and resin (Suchsland and Woodson 1986, Maloney
1993). Process optimization may also be realized from the use of a predictive model by
maximizing process throughput. Line speed is directly related to MDF throughput.
Predicting internal bond can allow machine operators to maximize line speed.

The statistically significant variables in a predictive model for the internal bond of
MDF may be important starting points for implementing better statistical process control
(SPC). One of the most important decisions in implementing SPC is the selection of
important process variables that may influence key product attributes (Deming 1986,
1993). Predictive modeling of the key product attribute of the internal bond of MDF may
indicate which “critically-few” process variables need to be analyzed and monitored in a
SPC framework. Reduction in special-cause and common cause variation of the
“critically-few” process variables may reduce variation in the internal bond of MDF.
Long-term reduction in the internal bond of MDF may result in future process and product
optimization.

4. SUMMARY

A data warehouse was developed for 230 process variables. The automated relational
database was developed by linking the Microsoft® SQL 7.0 lab database with
Wonderware® Industrial SQL 7.1 process data warehouse. Transact SQL encoding with
Microsoft SQL DTS and automated JOBS were used to automate the updating of the
database. The relational database was updated automatically when a destructive test was
completed. The crucial product attribute was the internal bond of MDF measured in p.s.i.

An exploratory case study was conducted on MDF from a large international
manufacturing facility. The purpose of the case study was to develop an automated
relational database using commercial software and to develop first order approximate
predictive models for the internal bond of MDF from the relational database using data
mining methods.

Three predictive models were developed for three distinct MDF products. We have
presented a sample of one of these models and related analysis in this paper. Forward
selection multiple linear regression methods were used to develop the models, but
backward and mixed yielded the same final “best” models. The coefficient of
determinations (R?) ranged from 0.77 to 0.97. The predictive models were developed in
the spirit of maximizing R?% (adjusted R®), maximum R” subject to the principle of
parsimony (i.e., fewer predictor variables being used as possible), minimum mean square
residual, VIFs < 10 (Variance Inflation Factor), no pattern in residuals, minimum PRESS
(Prediction Sum of Squares), Mallow’s Cp = p, and residual plots with homogeneous
variance. This approach produced very practical, easily implemented first order
approximations. In another paper, we plan to discuss some improvements using other
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techniques. Predicting values of the internal bond of MDF validated these first order
models and their important usefulness in real time manufacturing. For two of the three
models there was no significant increase in the variance of the residuals for test validation
predicted values. The model with the lowest R* had the largest variance in residuals for
test validation predicted values.

The ability to predict the internal bond of MDF helps prevent the manufacture of
defective product. Prediction of internal bond may also lead to process optimization by
minimizing raw material inputs and maximizing production throughput. An additional
benefit of predictive modeling may be in the successful implementation of better statistical
process control and continuous improvements strategies.
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