International Journal of Reliability and Applications
Vol. 3, No. 2, pp. 81-90, 2002

An Effective Stopping Rule for Software Reliability Testing

Bok Sik Yoon®

Department of Science
Hongik University, Seoul 121-791, Korea

Abstract. The importance of the reliability of software is growing more and
more as more complicated digital computer systems are used for real-time
control applications. To provide more reliable software, the testing period
should be long enough, but not unnecessarily too long. In this study, we
suggest a simple but effective stopping rule which can provide just proper
amount of testing time. We take unique features of software into
consideration and adopt non-homogeneous Poisson process model and
Bayesian approach. A numerical example is given to demonstrate the validity
of our stopping rule.

Key Words : Software Reliability, Stopping Rule, Bayesian Approach.

1. INTRODUCTION

As digital computer systems are applied more and more for the control of
complicated large-scale systems, the relative role of software becomes important
more and more in the system reliability. The failure of software in the nuclear
power plant control system can cause severe safety problems and the error in the
space shuttle system control software may delay the project. That is, the
importance of the reliability of software is growing more and more as more
complicated digital computer systems are used for real-time control applications.

Since early 1970’s the importance of software reliability has been recognized,
and coniderable efforts have been made for this topic. The researchers soon
understood that concepts and techniques used for hardware reliability cannot be
applied successfully for software directly. Software is considered to have some
unique features, which make the direct application of the techniques used for the
hardware reliability analysis undesirable and force us to develop its own model.
Due to the increase of interests and efforts for software reliability modeling, we
currently have several models which can be applied to analyze software reliability
as surveyed in [14] - [16].

Up to now there were considerable amount of research efforts for the stopping
time problem in reliability testing[5,13]. The question of when to stop testing the
software and release it for its intended use may occur in every software
development. The objective of this study is to find a simple stopping rule which
can be used conveniently in practical situations. Since the stopping problem is a

* E-mail address @ bsyoon@uwow. hongik.ac.kr



82 An Effective Stopping Rule for Software Reliability Testing

type of decision problem, it will be desirable to approach on the basis of the
life-time cost[10]. However, in this study the life-time cost minimization is not
considered to simplify the stopping rule. Also, in this study continuous execution
time is chosen as a time domain because of the following two reasons: First, the
real-world software problem usually occurs in large scale systems such as nuclear
power control system, space shuttle control system or utility program, where lots
of different inputs are intermittently received. Second, we can get simpler models
using continuous time.

To derive a reasonable stopping rule for software reliability testing, special
features of software and its reliability should be understood first. Based on them,
we can select proper models and measures to be used for stopping rule. In section
2, we will briefly discuss some features of both software and basic software
reliability models. In section 3, Goel-Okumoto model, which 1s selected to
demonstrate the stopping rule, is introduced. Also, the parameter estimation is
performed according to Bayesian approach. In section 4, a stopping rule is
introduced and in section 5, a numerical example is given. The conclusion is
followed in section 6.

2. SPECIAL FEATURES OF SOFTWARE RELIABILITY AND MODELING
2.1 Special features of software reliability

In this subsection, we will see what makes the difference between software and
hardware, and then in the following subsection we will scan several models
developed for software reliability analysis briefly.

Special features which distinguish software reliability models from hardware
reliability model are:

(1) Software does not age with time. Once it becomes perfect, it will never fail
and possibly the probability of no error can be greater than zero in small
substructures. Thus, the percentile of failure distribution, operational reliability, or
failure rates is more intuitive than MTTF[10].

(2) The failure occurs due to human errors in design and logic. Software failure
occurs only when some random inputs reveal unexpected errors. This brings us to
the shock modell2,3,9]. Hidden bugs may be detected and diagnosed during the
debugging stage and accordingly one of the main concern of software reliability is
the reliability growth in the ‘burn-in’ periodf9,12]. But, it is different from
hardware burn-in period in the sense that we cannot be sure of the correctness of
the debugging and the failure rate will not increase after the burn-in period.

(3) Every software is unique. Because there are no replicated items like
semiconductors, we cannot have repetitive data. This suggests us to follow
Bayesian approach.

(4) We cannot use redundant components to increase system reliability. But, we
may use the concept of components through the structural design of programming
[10]. Also, a fault tolerant design based on diversity concept is possible[11].

Based on above features, we can grasp some desirable properties of software
reliability models. Actually, Langberg and Singpurwalla(1985) tried to generalize the
software reliability model using shock model and Bayesian approach[1,3,9,12]. In the



Bok Sik Yoon 83

following section, we will scan Langberg and Singpurwalla (L-S) model and three
other historic models which can be generalized by L-S model. More detailed
analysis of these models can be found in [9). Also, other software reliability
models are appeared in [6], [14], [15].

2.2 Basic software reliability models

(1) Jelinski-Moranda(J-M) model (1972) [8]
The form of J-M model is

fr(t:N,A)=(N—i—1)Aexp(— A(N—i—=1)8), =0 ¢))
where N=the number of bugs in the program, A =failure rate of each bug, T
=the elapsed time between i™ and (i+1)" failures, i=1,...,N. That is, 7T;'s are

iid with desity (1). In [8], N and /A are estimated by maximum likelihood
method.

(2) Littlewood-Verrall(L-V) model (1973) [10]
Littlewood and Verrall(1973) apply Bayesian inference for their model having the
following form.
fT,(t:Ai) =Az'e—/1ity (2)
where A; has a Gammal( a, ¢,) prior.

By setting ¢, according to programmer’s confidence about the correctness of i
debugging, we can include the incomplete debugging case. If we want steadily
decreasing failure rate, we can set ¢; as

¢:= B+ Bt

(3) Goel-Okumoto(G-0) model (1979) [6]
This model will be discussed in detail in section 3. G-O model has the following
form.

PIN(H = y) = My{ﬁ om0 3)

where M #= the number of failure up to time t, m(#)=E(N(#)). That is,
{N(D), =0} is considered to be an NHPP(non-homogeneous Poisson process).

(4) Langberg and Singpurwalla’s generalization(1985) [9]
They starts with the shock model such as

Fr(t:wo,NN)=1—exp(—w(N—i+1)t/N"), (4)
where w= intensity function, N*= Total number of inputs, N= Number of inputs

which cause failure. If we set A=i*, we get exactly same form as (1), that is,

N
Fr(t:N,A)=1—exp(—AN—i+1)p (5)

We can see that if we treat N and /A as unknown constants(parameters), we
get J-M model, and if we give gamma prior to A, assuming N known we get

L-V model. Also, we assume /A known and N to have Poisson prior we can
derive G-O model.



84 An Effective Stopping Rule for Software Reliability Testing

These models reflect more or less the unique properties of software. Especially,
failure rates in all of them are decreasing in time and at each debugging. Now,
comparing the pattern of failure rate variation in each model, we can see that they
all have DFRs in time, but the decreasing patterns are different. In J-M model the
failure rate between two successive failures remains constant. In L-V model and
G-0 model it decreases both in time and at each debugging, but only L-V model
can reflect the case of incomplete debugging, even though this can be made only
by human judgement.

3. GOEL-OKUMOTO MODEL AND BAYESIAN INFERENCE
3.1 Goel-Okumoto model

In this study, G-O model is selected to demonstrate our stopping rule because of
its intuitive appeal, mathematical simpleness and practical applicability. Let N(?)
be the cumulative number of failures by time t as in section 2. Assume that the
counting process {N(H,t=0} has the property of independent increments, that is,
the number of software failures during nonoverlapping time intervals do not affect
each other. And assume m(f)= E(N(H) is bounded and non-decreasing, and
m(0)=0, m(d—a as #->o0, where a is the exact number of errors(bugs) in
the software. Assume further the following (6)-(8).

m(t+ 2D —m(D=bla—m(H)ot+o(At) (6)
P(N(t+ 2 —-NOH=D=ADat+o(al) (7)
P(N(t+ aH)>1)=o(ot) (8)
From (6), we get

m' (D)= ab— bm(t) 9)

and combining boundary conditions, we have
m(f) = a(l—exp(— b1)). (10)

or

m (H=A(H) = abe™ . (11)

Under the assumption of independent increments, (7) and (8), {M(#,t=0}
becomes an NHPP(Nonhomogeneous Poisson Process) with mean m(H and
intensity A(9, ie.

P(N(t)=y>=ﬂy%ﬁe-m<”, y=0,1,2,... (12)

Goel and Okumoto[4] used maximum likelihood estimation to estimate a and b.
The likelihood function at the k™ failure time becomes
L(d,b:Tl, ey Tk) = L(a,b:Slv...,Sk)

= [ (S)exp(— (m(S) = m(Si1)
- (ab)kexp(—bgsi) exp(—all— e ")), (13)

where Sp=0, S;= 27‘; = ™ failure time, i=1,...,k. After taking log, we
F=

have



Bok Sik Yoon 35

log L= k(loga+ logb) — b,gsi_ a(l—e .

dlogL _ .4 dlogL

From 50 b ={ we have
k- e ¥ (14)
a
k -85,
‘E = “ Sk + aSke (15)

By solving (14) and (15) numerically we can get MLE's for a and &. But the

solution may not be unique. From the following Hessian H of logL, we can see
this fact.

p=| —#a’ =S ] (16)
—See " — kb + aSie ™
More specifically, H;; <0 but the determinant of H is
2 2q =S -85,
— k+
\H|= kE—ab’Sye “(ktae ) | an

7.2
ab
where a>(0, 0<5<1, the sign of which depends on & and S,.

3.2 Estimation by Bayesian approach

The derivation of G-O model in the last section was made by a probabilistic
intuitive approach. Now we follow Bayesian approach to estimate the model
parameters. The reason is two-fold: First, usually there are not sufficient number
of data for reliable statistical estimation as mentioned in section 2. Second, MLE's
are not convenient to compute as we can see in section 3.1. But in applying
Bayesian method, some assumptions are needed to simplify the estimation
procedure because the G-O model has two parameters.

We can see from (6) each parameter has its practical meaning:
a=the expected number of total errors in the software

and

p— E(t of ervors detected during (i, t+ 01))

E(# of errors remaining at DAt
= occurrence rate of an error.

From this, we assume reasonably @ and b are independent and b, the occurrence
rate of an error, is constant and ¢ has a gamma prior

Ra:a,B)=Ba""'e #/Ia).

Then,

P(dib, tl! o tk)oce—azake—ﬂaaa—lz e—(c+ﬁ)aaa+k—l
— bS,

where c=1l—e , from which we notice that the posterior of @ is Gamma
(a+k, S+ c). Now the Bayes estimator under squared error loss is

E(a:data, b)= Z’:::/ce (18)

Now, if & is constant but it may change as the testing goes on, the following
procedure can be proposed.




36 An Effective Stopping Rule for Software Reliability Testing

Step 1. Find estimator a= E(a: b, data) with previous b.

Step 2. Update & using the equation “d—lg,% =() with fixed a.

Note that in step 2, the equation

dlogL _ k _ ‘{:‘ o fo S
b - S; — aS,e 0 19
may have more than one solution and we need to check the negativity of
dilogl _ —k , ~ca -ts.
4 bg}’ = + aSie

at the solution of (19) to confirm its maximality.
Note that our approach here is quite intuitive and empirical and different from
the formal Bayesian approachl[1].

4. A STOPPING RULE

As mentioned in section 2, the desirable measure in software reliability is the
failure rate or operational reliability. In this section, a simple stopping rule which
can be implemented conveniently in the practical situation is developed. Based on
G-O model, we first calculate various measures which can be used for stopping
criteria.

Let N°(¥) = the number of errors remaining at time t. Then, since from (12)
N(c0) follows Poisson distribution with mean a independently of N(# and
N(H = N(0)— N(§, we have

x+y
P(N‘(t)=x:a,b,N(t)=y)=-me_“ (20)
and
E(N°(D) :a,b,N()=y)=a—y. (21)
We also have the conditional reliability at S,=s, as

F(x 55 a, b)= exp(— a(e™ ¥ — ¢ 729y (22)

and the conditional failure rate at S,=s; as

Rx:s4 a, b) - K5+ 2)

: = kR . 23
Alx:sp,a,b) F(x s, a.b) abe (23)

We now develop a stopping rule based only on operational reliability. To do this,
we need to provide two criteria apriori: the guaranteed period and the desired
reliability. Since it is possible to set up the mission period during which the
current version of software is to perform its duty until more advanced one replaces
its role, the guaranteed period seems to be more meaningful.

Let the guaranteed period be T and assume that P(No failure during 7) =R is
required, i.e. the desired reliability = R. If the k™ failure time is given, we get the
reliability function at S, as (22). Now, if no failure is observed during the testing

period t, we have

P T TS =35, yb
P(Tpi> T:Tps2t,Sp=s,a,b) = (Tery> r=S5,a,b)

P( Tk+1>t:Sk=S, a, b)




Bok Sik Yoon 87

FY(T:s,ab) (
= 24)
F(t:s, a,b)
and we want this value is greater than or equal to K. That is,
—bs,,__ e —b(s,+ T)

exp(—ale
e S =R,
—e )

exp(—ale”
from which we can derive

- 5T _ - bs
log (e Elgg Rlae™™) (25)

Using (25), we can develop the following stopping rule. Note that (24) increases at
each failure debugging and in the elapsed time between two successive failures.

t> =

[Stopping rule]

Step 1. Continue test.

If time to next failure >¢", then stop with the guaranteed reliability .
Else go to step 2.

Step 2. At the next, say kth, failure, update a(and 3, if desirable ) using

a= L}‘?_bﬁ (and by the procedure proposed in 3.2 for b)

Btl—e
If F(T:su a, b)>R, then stop with reliability F(T:s, a, b). Else
go to step 1.

If the guaranteed period is very long, it may take too much time until stopping
the test. In this case we can revise the step 2 of the above stopping rule by
adding the criterion E(N({) :a, b, N(f)=k)=a—k<(, which was devised to

prevent the expected number of remaining bugs at the time of the k™ failure from
being negative. The revised step will be the following.

Revised Step 2. At the next, say k[h, failure, update a(and B, if desirable ) as
in the original step 2. If F°(T:s,, a, b)>R or a—#£<(, then stop
with reliability F°(T:s,, @, b). Else go to step 1.

5. A NUMERICAL EXAMPLE

To demonstrate how the stopping rule in section 4 works, the data given in [5]
is taken. The data originally from the U.S. Navy Fleet Computer Programming
center is the record of the errors occurred during the development of software for
the real-time, multicomputer complex which forms the core of the Naval Tactical
Data Systems. The data is shown in table 1.

The result of application of the stopping rule is summarized in table 2.



38 An Effective Stopping Rule for Software Reliability Testing

Table 1. NTDS DATA

Error No. Time Between Errors Cumulative Time

k t,, days Sp= 21‘[ , days

Production (checkout) phase

1 9 9
2 12 21
3 11 32
4 4 36
5 7 43
6 2 45
7 5 50
3 8 58
9 5 63
10 7 70
11 1 71
12 6 77
13 1 78
14 9 87
15 4 91
16 1 92
17 3 9%
18 3 98
19 6 104
20 1 105
21 11 116
22 33 149
23 7 156
24 91 247
25 2 249
26 1 250
Test Phase
27 87 337
28 47 384
29 12 396
30 9 405
31 135 540
User Phase
32 258 798
Test Phase
33 16 814

34 35 849




Bok Sik Yoon 89

Table 2. Resulted Stopping Times

Guarantee Period(T) Rel.(R) # % Stopping Time & Step

100 95 9.1 31 501.1 Step 1
.90 922 31 497.2 Step 1
200 95 1875 32 7275 Step 1
90 171 32 715.1 Step 1
300 95 2305 — “need more test
90 1765
500 95 3487
90 2600

+* Initial prior of @ is X?%(30). ie. @p=230.
b is set to 0.0005.

From table 2, we can see our stopping rule gives us reasonable stopping times.
For example, based on table 2, if we stop at the 3lst failure, we cannot guarantee
300 or more hours of failure-free operation. This is consistent with the given data
as we can see at the 32™ failure.

6. CONCLUDING REMARKS

We can develop various stopping rules based on reasonable software reliability
measures, like reliability, failure rate and expected number of remaining errors in
the software. The stopping rule in section 4, is only one example. Though this
stopping rule can be applied to any model introduced in section 2, the application
was made only to G-O model in this study. It will be interesting to compare the
stopping times under different models with the same data.

If we consider life time costs including debugging cost, execution cost during
testing and failure cost after release, we may get more practical stopping rule. But
in this case because of the difficulty in the estimation it seems to be very hard to
get a simple stopping rule.

REFERENCES
[1] Achcar, J.A., D.K. Dey and M. Niverthi (1998). A Bayesian approach using
nonhomogeneous Poisson processes for software reliability models, in Frontiers

in Reliability ed. A.P. Basu et al.,, World Scientific.

[2] Barlow, R.E. and F. Proshan (1981). Statistical Theory of Reliability and Life
Testing, To Begin With, Silversprings.



90 An Effective Stopping Rule for Software Reliability Testing

{3] Chatterjeea, S., R.B. Misrab, and S.S. Alama (1998). A generalised shock model
for software reliability, Computers & Electrical Engineering, 24(5), 363-368.

[4] Esaki, K. and M. Takahashi (1999). A model for program error prediction based
on testing characteristics and its evaluation, International journal of Reliability,
Quality and Safety Engineering, 6(1), 7-18.

[5] Forman, EH. and N.D. Singpurwalla (1977). An empirical stopping rule for
debugging and testing computer software, J. Amer. Statis. Assoc. 72, 750-757.

[6] Goel, AL. and K. Okumoto (1979). Time-dependent error-dependent rate model
for software reliability and other performance measures, [IEEE Trans.
Reliability, R-28, 206-211.

[7] Finkelstein, M.S. (1999). A point-process stochastic model for software
reliability, Reliability Engineering & System Safety, 63(1), 67-71.

[8] Jelinski, Z and P. Moranda (1972). Software reliability research, in Statistical
Computer Performance Evaluation, (W. Freaberger, ed.), 465-484, Academic
Press, New York.

(9] Langberg, N. and N.D. Singpurwalla (1985). Unification of some software
reliability models via the Bayesian approach, SIAM Journal on Scientific and
Statistical Computation, 6(3), 781-790.

[10] Littlewood, B. (1979). How to measure software reliability and how not to,
IEEE Trans. Reliability, R-28, 103-110.

[11] Littlewood, B., P. Popov and L. Strigini (2001). Modelling software design
diversity: a review, ACM Computing Surveys (to appear).

(12] Littlewood, B. and J.L. Verrall (1973). A Bayesian reliability growth model for
computer software, J. Roy. Stat. Soc. 22, 332-346.

[13] Littlewood, B. and D. Wright (1997). Some conservative stopping rules for the
operational testing of safety-critical software, IEEE Trans. Software
Engineering, 23(11), 673-683.

[(14] Lyu, M. (1996). Handbook of Software Reliability Engineering, McGraw-Hill,
NY.

[15] Musa, J.D., A. lIannino and K. Okumoto (1987). Software Reliability, McGraw-
Hill, New York.

[16] Pham, H. and X. Zhang (1997). An NHPP software reliability model and its
comparison, International Journal of Reliability, Quality and Safety
Engineering, 4(3), 269-282.



