폴리이미드 LB 필름을 이용한 패터닝 및 생물전자 소자로의 응용에 관한 연구

Studies on the Patterning of Polyimide LB Film and Its Application for Bioelectronic Device

  • 오세용 (서강대학교 공과대학 화학공학과) ;
  • 박준규 (서강대학교 공과대학 화학공학과) ;
  • 정찬문 (연세대학교 문리대학 화학과) ;
  • 최정우 (서강대학교 공과대학 화학공학과)
  • 발행 : 2002.09.01

초록

고분자 주사슬에 벤젠과 sulfonyloxvimide moiety를 가지고 있는 polyamic acid 초박막을 LB 기법을 이용하여 제조한 다음 200 $^{\circ}C$에서 1시간 동안 열처리에 의해 감광성 폴리이미드 LB 필름을 얻었다. Polyamic acid는 THF-pyridine 공용매를 가지고 축중합에 의해 합성하였다. 모든 단량체와 고분자는 원소분석, FT-IR, $^1$H-NMR의 분광학적 측정을 통해 정량 정성분석을 행하였다. UV lithography 방법을 사용하여 금 기판 위에 제조한 감광성 폴리이미드 LB 필름의 마이크로 어레이 패턴을 제조하였다. 형성된 마이크로 어레이 패턴을 따라 두 가지의 자기조립 방법으로 단백질 cytochrome c 단분자 막을 고정화시켰다. 자기조립된 cytochrome c 단분자 막의 물리ㆍ전기 화학적 특성은 cyclic voltammetry와 AFM을 통해 조사하였으며 생물전자소자로의 응용 가능성에 대해서도 검토하였다.

Ultrathin film of polyamic acid having benzene and sulfonyloxyimide moieties was prepared using the Langmuir-Blodgett (LB) technique, and then photosensitive polyimide LB film was obtained by the thermal treatment of precursor polyamic acid multilayers at 200$\^{C}$ for 1 hr. The polyamic acid was synthesized by condensation polymerization under THF and pyridine cosolvent. All monomers and polymers were identified through elemental analysis, FT-IR and $^1$H-NMR spectroscopic measurements. The microarray patterning of photosensitive polyimide LB film on a gold substrate was generated with a deep UV lithography technique. The well-characterized monolayer of cytochrome c was immobilized on the microarray patterns using two different self-assembly processes. Physical and electrochemical properties of the self-assembled cytochrome c monolayer were investigated based on cyclic voltammetry and atomic force microscopy (AFM). Also, its application in bioelectronic device was examined.

키워드

참고문헌

  1. Electrochimica Acta v.42 L.T. Romankiw https://doi.org/10.1016/S0013-4686(97)00146-1
  2. Acct.Chem.Res. v.27 S.A. MacDonald;C.G. Willson https://doi.org/10.1021/ar00042a001
  3. Molecular Electronics: Bissensor and Biocomputers F. Hong
  4. Langmuir-Blodgett Films G.Roberts
  5. Synthetic Metals v.71 T. Kubota;M. Iwamoto https://doi.org/10.1016/0379-6779(94)03133-Q
  6. Nature v.355 D. Harrer
  7. Material Science and Engineering v.C6 Noboru Saito;Takehisa Matsuda
  8. Colloids and Surfaces A: Physicochemical and Engineering Aspects v.155 Dan V. Nicolau;Takahisa Taguchi;Hiroshi Taniguchi;Susumu Yoshikawa https://doi.org/10.1016/S0927-7757(98)00395-1
  9. Mol.Cryst.Liq.Cryst. v.349 J.W. Choi;Y.S. Nam;S.Y. Oh;D.H. Kim;W.H. Lee https://doi.org/10.1080/10587250008024923
  10. Mol.Cryst.Liq.Cryst. v.370 J.W. Choi;C.J. Yoo;Y.S. Nam;W.H. Lee;S.Y. Oh;Masamich Fujihira https://doi.org/10.1080/10587250108030097
  11. Biosensors and Bioelectronics v.16 no.9 J.W. Choi;Y.S. Nam;S.J. Park;W.H. Lee;D.H. Kim;Masamichi Fujihira https://doi.org/10.1016/S0956-5663(01)00225-1
  12. Colloids and Surfaces B: Biointerfaces v.15 Emanuele Ostuni;Lin Yan;George M.Whitesides https://doi.org/10.1016/S0927-7765(99)00004-1
  13. Biomaterials v.19 A.S. Blawas;W.M. Reichert https://doi.org/10.1016/S0142-9612(97)00218-4
  14. J.Electroanal Chem. v.416 Jinghong Li;Guangjin Cheng https://doi.org/10.1016/S0022-0728(96)04732-8
  15. Biosensor: Fundermental and Application A.P.F. Turner
  16. Polymer(Korea) v.23 no.4 S.Y. Oh;J.Y. Lee;S.Y. Cho;C.M. Chung
  17. Polymer(Korea) v.24 no.3 S.Y. Oh;J.Y. Lee;S.Y. Cho;C.M. Chung
  18. Mol.Cryst.Liq.Cryst. v.349 S.Y. Oh;J.Y. Lee;S.Y. Cho;C.M. Chung https://doi.org/10.1080/10587250008024874
  19. Mol.Cryst.Liq.Cryst. v.370 S.Y. Oh;J.K. Park;J.W. Choi;C.M. Chung https://doi.org/10.1080/10587250108030063