Improvement of Toughness of Tetrafunctional Epoxy (TGDDM) Resin Using Polyamideimide (PAI) Resin

폴리아미드이미드 수지를 이용한 4관능성 에폭시 수지의 강인화 향상

  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 허건영 (한국화학연구원 화학소재연구부) ;
  • 이재락 (한국화학연구원 화학소재연구부) ;
  • 홍영택 (한국화학연구원 화학소재연구부) ;
  • 최길영 (한국화학연구원 화학소재연구부)
  • Published : 2002.09.01

Abstract

In this study, 4,4'-tetraglycidyl diaminodiphenyl methane (TGDDM)/polyamideimide (PAI) blends were cured using diaminodiphenyl sulfone (DDS). And the effect of addition of different PAI contents to neat TGDDM was investigated in the thermal, mechanical, and morphological properties of the blends. The cure behavior and thermal stability of the cured specimens were monitored by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. Also, the critical stress intensity factor (K$\_$IC/) was measured in UTM, and the phase separation behavior and final morphology of TGDDM/PAI blends were examined in scanning electron microscopy(SEM). As a result, the cure temperature and cure activation energy (E$\_$a/) were decreased with increasing the PAI content. The decreasing of cure temperature and cure activation energy were probably due to the presence of secondary amine group of PAI backbone used as co-initiator. But, the decomposition activation energy (E$\_$t/) and K$\_$IC/ value were increased up to 5. 10 phr of PAI content, respectively and they were decreased above the PAI contents. These results were explained on the basis of chain scission reaction by etherification. And morphology of blends observed from SEM was confirmed in co-continuous structures.

본 연구에서는 DDS로 경화된 4관능성 에폭시 (TGDDM)/폴리아마이드이미드 (PAI) 블렌드의 PAI 함량에 따른 블렌드계의 열적, 기계적 및 형태학적 특성에 대해 연구하였다 경화된 시편의 경화거동과 열안정성은 DSC와 TGA로 각각 조사하였다. 또한 $K_{IC}$ 는 UTM을 사용하여 측정하였으며, TGDDM/PAI 블렌드의 상거동과 최종 모폴로지는 SEM을 사용하여 관찰하였다. 그 결과 PAI 함량이 증가할수록 경화온도와 경화활성화 에너지는 감소하였다 경화온도와 경화활성화 에너지의 감소는 PAI 주쇄의 2차 아민이 co-initiator로서 사용되었기 때문인 것으로 사료된다. 그러나 분해활성화 에너지와 $K_{IC}$ 값은 각각 PAI 함량 5, 10 phr까지 증가하다 그 이상치 한량에서는 감소하는 경향을 보였다. 이러한 결과들은 에테르화에 의한 사슬절단 반응에 기초하여 설명되었다. 그리고 SEM에 의한 모폴로지 관찰로부터 블렌드계의 co-continuous 구조가 확인되었다.

Keywords

References

  1. Disigning with Plastic and Composites S.V. Rosato;D.P. Dimattia;D.V. Rosato
  2. Compos.Sci.Technol. v.62 Z. Zhang;Y. Liu;Y. Huang;L. Liu;J. Bao https://doi.org/10.1016/S0266-3538(01)00222-6
  3. Polym.Adv.Technol. v.9 J.H. Hodgkin;G.P. Simon;R.J. Varley https://doi.org/10.1002/(SICI)1099-1581(199801)9:1<3::AID-PAT727>3.0.CO;2-I
  4. Polymer v.42 K. Mimura;H. Ito;H. Fujioka https://doi.org/10.1016/S0032-3861(01)00460-8
  5. Eur.Polym.J. v.34 M. Ghaemy;M.H. Khandani https://doi.org/10.1016/S0014-3057(97)00122-5
  6. Polymer v.39 Z. Zhong;S. Zheng;J. Huang;Q. Gue;J. Wei https://doi.org/10.1016/S0032-3861(97)00382-0
  7. Polymer v.41 P. Musto;L. Mascia;G. Ragosta;G. Scarinzi;P. Villano https://doi.org/10.1016/S0032-3861(99)00210-4
  8. Makromol.Chem.Phys. v.18 P. Musto;G. Ragosta;P. Russo;L. Mascia
  9. J.Appl.Polym.Sci. v.82 S.J. Park;J.S. Jin https://doi.org/10.1002/app.1903
  10. Eur.Polym.J. v.37 B. Fernandez;M.A. Corcuera;C. Marieta;I. Mondragon https://doi.org/10.1016/S0014-3057(01)00045-3
  11. Mater.Design. v.22 X. Xie;H. Yang https://doi.org/10.1016/S0261-3069(00)00027-3
  12. Thermochim.Acta. v.340 S. Li;B.L. Hsu;F. Li;C.Y. Li;F.W. Harris;S.Z.D. Cheng https://doi.org/10.1016/S0040-6031(99)00266-X
  13. J.Polym.Sci.Polym.Phys. v.35 R.J. Varley;J.H. Hodgkin;D.G. Hawthorne;G.P. Simon https://doi.org/10.1002/(SICI)1099-0488(19970115)35:1<153::AID-POLB13>3.0.CO;2-C
  14. J.Polym.Sci.Polym.Phys. v.39 S.J. Park;H.C. Kim https://doi.org/10.1002/1099-0488(20010101)39:1<121::AID-POLB110>3.0.CO;2-N
  15. J.Appl.Polym.Sci. v.77 S.K. Siddhamalli;T. Kyu https://doi.org/10.1002/1097-4628(20000808)77:6<1257::AID-APP10>3.0.CO;2-Z
  16. Angew.Markromol.Chem. v.259 Y.T. Hong;D.H. Suh;S.Y. Kim;K.Y. Choi
  17. Epoxy Resin Chemistry and Technology(2nd Ed.) C.A. May
  18. J.Appl.Polym.Sci. v.74 C.S. Wang;C.H. Lin https://doi.org/10.1002/(SICI)1097-4628(19991114)74:7<1635::AID-APP4>3.0.CO;2-P
  19. J.Polym.Sci.Polym.Phys. v.38 S.J. Park;T.J. Kim;J.R. Lee https://doi.org/10.1002/1099-0488(20000815)38:16<2114::AID-POLB50>3.0.CO;2-8
  20. Polym.Int. v.51 S.J. Park;T.J. Kim;H.Y. Kim https://doi.org/10.1002/pi.869
  21. Polym.Adv.Technol. v.10 N. Regnier;M. Fayos;P. Moreau;E. Lafontaine;B. Mortaigne https://doi.org/10.1002/(SICI)1099-1581(199911)10:11<637::AID-PAT915>3.0.CO;2-7
  22. J.Polym.Sci.Polym.Phys. v.39 S.J. Park;H.C. Kim https://doi.org/10.1002/1099-0488(20010101)39:1<121::AID-POLB110>3.0.CO;2-N
  23. Polymer v.30 C.B. Bucknall;A.H. Gillbert https://doi.org/10.1016/0032-3861(89)90107-9
  24. J.Appl.Polym.Sci. v.65 E.G. Reydet;V. Vicard;J.P. Pascault;H. Sautereau https://doi.org/10.1002/(SICI)1097-4628(19970919)65:12<2433::AID-APP15>3.0.CO;2-1
  25. Polymer(Korea) v.17 J.H. Kim;T.H. Kim;T.K. Kim;J.B. Ahn;D.S. Lee
  26. Macromol.Rapid.Commun. v.22 X. Wu;J. Cui;Y. Ding;S. Li;B. Dong;J. Wang https://doi.org/10.1002/1521-3927(20010301)22:6<409::AID-MARC409>3.0.CO;2-7