Diglycidylether of Bisphenol-S 에폭시 수지의 합성 및 경화거동에 관한 연구

Synthesis and Cure Behaviors of Diglycidylether of Bisphenol-S Epoxy Resins

  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 김범용 (한국화학연구원 화학소재연구부) ;
  • 이재락 (한국화학연구원 화학소재연구부) ;
  • 신재섭 (충북대학교 화학과)
  • 발행 : 2002.07.01

초록

본 논문에서는 bisphenol-S (BPS)와 epichlorohydrin (ECH)를 NaOH의 촉매하에서 중합시켜 diglycidylether of bisphenol-S (DGEBS) 에폭시 수지를 합성하였다. IR, NMR spectra 분석, 그리고 원소분석에 의해 합성한 DGEBS 에폭시 수지의 화학구조를 확인하였다 산무수화물계 phthalic anhydride (PA)와 tetrahydrophthalic anhydride (THPA)를 경화제로 사용하여 DSC에 의한 열분석을 통하여 DGEBS 에폭시 수지의 경화 동력학과 유리전이온도 ($T_g$)를 고찰하였으며, TGA 열분석을 사용하여 경화된 시편의 열안정성을 측정하였다. 실험 결과 DGEBS/PA계의 경화 활성화 에너지 ($E_a$)는 DGEBS/THPA계보다 높았지만 ($T_g$), 열분해 개시온도 (IDT), 그리고 분해 활성화 에너지 ($E_t$)는 DGEBS/THPA계보다 낮았다. 이는 경화제의 ring strain에 의하여 DGEBS/THPA계의 가교 밀도가 증가하였기 때문인 것으로 사료된다.

In this work, diglycidylether of bisphenol-S (DGEBS) epoxy resin was prepared by alkaline condensation of bisphenol-S (BPS) with epichlorohydrin (ECH) in the presence of NaOH catalyst. The structure of the synthesized DGEBS epoxy resin was confirmed by IR, NMR spectra, and elemental analysis. The curing reaction and glass transition temperature ($T_g$) of DGEBS epoxy resin cured with phthalic anhydride (PA) and tetrahydrophthalic anhydride (THPA) at curing agents were studied by dynamic differential scanning calorimetry (DSC). The thermal stability of the cured specimen was investigated by thermogravimetric analysis (TGA). As a result, the activation energy ($E_a$) of DGEBS/PA system was higher than that of DGEBS/THPA system, whereas $T_g$, initial decomposed temperature (IDT), and decomposition activation energy ($E_t$) of DGEBS/PA were lower than those of DGEBS/THPA. This was probably due to the fact that the crosslinking density of DGEBS/THPA was increased by ring strain of curing agent.

키워드

참고문헌

  1. Advanced in Chemistry Series no.114 Epoxy Resin Chemistry R. S. Bauer
  2. Macromolecules v.34 S. J. Park;H. C. Kim;H. L. Lee;D. H. Suh https://doi.org/10.1021/ma010792x
  3. J. Polym. Sci,,Part B:Polym. Phys. v.39 S. J. Park;H. C. Kim https://doi.org/10.1002/1099-0488(20010101)39:1<121::AID-POLB110>3.0.CO;2-N
  4. Makromol. Chem. v.199 D. J. Liaw;W. C. Shen https://doi.org/10.1002/apmc.1992.051990114
  5. React. Kinet. Catal. Lett. v.72 M. R. Kim;H. S. Kim;D. W. Park;J. K. Lee https://doi.org/10.1023/A:1010575820818
  6. J. Appl. Polym. Sci. v.83 K. C. Cheng;S. Y. Yu;W. Y. Chiu https://doi.org/10.1002/app.10160
  7. Eur. Polym. J. v.38 S. Bhuniya;S. Maiti https://doi.org/10.1016/S0014-3057(01)00163-X
  8. J. Appl. Polym. Sci. v.78 G. H. Hsiue;Y. L. Liu;J. Tsiao https://doi.org/10.1002/1097-4628(20001003)78:1<1::AID-APP10>3.0.CO;2-0
  9. J. Appl. Polym. Sci. v.73 G. H. Hsiue;W. J. Wang;F. C. Chang https://doi.org/10.1002/(SICI)1097-4628(19990815)73:7<1231::AID-APP17>3.0.CO;2-U
  10. J. Appl. Polym. Sci. v.58 S. Podzimek;V. Sykora;J. Horalek;S. Svestka https://doi.org/10.1002/app.1995.070580910
  11. J. Appl. Polym. Sci. v.54 V. Sykora;V. Spacek;I. Dobas https://doi.org/10.1002/app.1994.070541010
  12. Int. J. Chem. Kinet. v.33 S. G. Shen;Y. F. Li;J. G. Gao;H. W. Sun https://doi.org/10.1002/kin.1051
  13. Angew. Makromol. Chem. v.117 R. K. Bansal;R. K. Agarwal;K. Keshav
  14. Angew. Makromol. Chem. v.227 J. K. Parekh;R. G. Patel https://doi.org/10.1002/apmc.1995.052270101
  15. J. Res. Nat. Bureau. Stand. v.57 H. E. Kissinger
  16. Anal. Chem. v.60 D. N. Waters;J. L. Paddy https://doi.org/10.1021/ac00152a014
  17. Polymer Chemistry M. P. Stevens
  18. J. Polym. Sci.,Part B: Polym. Phys. v.38 S. J. Park;T. J. Kim;J. R. Lee https://doi.org/10.1002/1099-0488(20000815)38:16<2114::AID-POLB50>3.0.CO;2-8
  19. J. Appl. Polym. Sci. v.69 K. Pielichowski;P. Czub;J. Pielichowski https://doi.org/10.1002/(SICI)1097-4628(19980718)69:3<451::AID-APP4>3.0.CO;2-F
  20. Polym. Int. v.49 J. G. Gao;Y. F. Li https://doi.org/10.1002/1097-0126(200012)49:12<1590::AID-PI548>3.0.CO;2-K
  21. Anal. Chem. v.33 C. D. Doyle https://doi.org/10.1021/ac60169a022
  22. Anal. Chem. v.35 H. H. Horowitz;G. Metzger https://doi.org/10.1021/ac60203a013