Chemical Modification and Functionalisation of Poly(ethylene terephthalate) Fiber

폴리에틸렌테레프탈레이트 섬유의 화학개질 및 기능화

  • 김인회 (성균관대학교 응용화학부 텍스타일시스템공학전공) ;
  • 김성희 (성균관대학교 응용화학부 텍스타일시스템공학전공)
  • Published : 2002.05.01

Abstract

Poly (ethylene terephthalate) (PET) fibers were modified by deep UV irradiation which was produced by a low pressure mercury lamp. FT-IR and XPS analyses were used to elucidate the surface chemical composition of PET fibers treated with UV. Relative $O_{1s}$ intensity increased considerably and it was found that oxygen was incorporated in the form of COO on the fiber surface. FT-IR and XPS analyses proved the existence of carboxylic groups on the surfaces and the adsorption test of cationic compound further supported these results. The concentration of carboxylic acid group on the surface increased remarkably with Increasing irradiation time. XPS analysis and adsorption experiments proved that the surface structure of the UV-irradiated PET fibers were stable for 12 months. Antibacterial property and the deodorization rate of UV-irradiated PET fibers adsorbed with the berberine compound were investigated. Reduction rates of bacteria increased by about 21 to 99% compared to unradiated PET fiber. Deodorization rates of 23% for unradiated PET fiber increased to about 75% for 30 min irradiated samples.s.

단파장 자외선을 이용하여 폴리에틸렌테레프탈레이트(PET) 섬유 표면의 화학적 성질을 개질 하였다. 자외선 조사에 의하여 PET 섬유의 화학결합이 절단되어 섬유표면에 COOH기가 생성되고 자외선 조사시간에 비례하여 COOH기가 증가함을 FT-IR과 XPS 분석에 의하여 확인하였으며 XPS측정을 통하여 PET 섬유 표면에 생성된 COOH기가 12개월후에도 변화가 없음을 알 수 있었다. 또한 자외선 조사 PET 섬유에 기능성을 부여하기 위하여 사용한 친수성의 양이온성 천연화합물이, 자외선 조사 PET 섬유에 용이하게 흡착되는 현상으로부터 자외선 조사에 의하여 PET 섬유표면에 음이온성을 나타내는 COOH기가 존재함을 흡착실험을 통하여 확인하였다. 항균성 및 소취성을 측정한 결과 자외선 조사시간이 30분 이상인 경우에 99% 이상의 항균성과 75% 이상의 소취성을 나타내는 기능성 PET 섬유의 제조가 가능하였다.

Keywords

References

  1. Sen-i Gakkaishi v.21 C. Kujirai https://doi.org/10.2115/fiber.21.626
  2. Sen-i Gakkaishi v.22 C. Kujirai https://doi.org/10.2115/fiber.22.20
  3. Sen-i Gakkaishi v.22 C. Kujirai https://doi.org/10.2115/fiber.22.84
  4. Textile Res. J. v.63 T. Wakida;S. Tokino;S. Niu;H. Kawamura https://doi.org/10.1177/004051759306300802
  5. Textile Res. J. v.63 T. Wakida;S. Tokino;S. Niu;H. Kawamura;Y. Sato;M. Lee;H. Uchiyama;H. Inagaki https://doi.org/10.1177/004051759306300801
  6. Sen-i Gakkaishi v.50 S. Nakano;T. Isono;M. Furutani;T. Senzaki;M. Suzuki https://doi.org/10.2115/fiber.50.3_136
  7. Sen-i Gakkaishi v.51 T. Imai;K. Shirai https://doi.org/10.2115/fiber.51.2_95
  8. Jan. Res. Ass. Text. v.21 T. Toda
  9. J. Appl. Polym. Sci. v.27 E. M. Sanders;S. H. Zeronian https://doi.org/10.1002/app.1982.070271135
  10. Sen-i Gakkaishi v.39 T. Kiyotsukuri;Y. S. Cho https://doi.org/10.2115/fiber.39.8_T331
  11. Textile Res. J. v.53 C. Sawatari;N. Abumiya;K. Inoue;M. Matsuo https://doi.org/10.1177/004051758305301211
  12. Sen-i Gakkaishi v.46 T. Takata;M. Furukawa https://doi.org/10.2115/fiber.46.4_142
  13. Textile Res. J. v.51 R. R. Benerito;T. L. Ward;D. M. Soignet;O. Hinojosa https://doi.org/10.1177/004051758105100402
  14. Textile Res. J. v.50 K. S. Gregorsky;A. V. Pavlath https://doi.org/10.1177/004051758005000107
  15. J. Polym. Sci. v.12 K. S. Lee;A. V. Pavlath
  16. J. Phys. D Appl. Phys. v.21 S. Kanazawa;M. Kogoma;T. Moriwaki;S. Okazaki https://doi.org/10.1088/0022-3727/21/5/028
  17. J. Text. Inst. v.90 J. Shao;C. M. Carr;C. P. Rowlands;J. Walton https://doi.org/10.1080/00405000.1999.10750045
  18. J. Chem. Tech. Biotechnol. v.53 R. H. Bradley;I. L. Clackson;I. Sutherland;J. A. Crompton;M. A. Rushforth
  19. J. Soc. Dyers Col. v.91 A. Daytner;E. Finnimore;V. Meyer
  20. J. Appl. Polym. Sci. v.70 E. Katan;M. Narkis;A. Siegmann https://doi.org/10.1002/(SICI)1097-4628(19981121)70:8<1471::AID-APP6>3.0.CO;2-A
  21. J. Appl. Polym. Sci. v.43 Y. Rosenberg;A. Siegmann;M. Narkis https://doi.org/10.1002/app.1991.070430314
  22. J. Polym. Sci., Polym. Phys. v.25 K. D. Pae;S. K. Bahteja;J. R. Gilbert https://doi.org/10.1002/polb.1987.090250402
  23. J. Am. Chem. Soc. v.106 S. Lazare;P. D. Hoh;J. M. Baker;R. Srinirasan https://doi.org/10.1021/ja00327a050
  24. J. Appl. Polym. Sci. v.16 M. Day;D. M. Willes https://doi.org/10.1002/app.1972.070160117
  25. J. Appl. Polym. Sci. v.19 D. K. Owens https://doi.org/10.1002/app.1975.070190121
  26. J. Mater. Sci. v.14 D. Briggs;D. M. Brewis;M. B. Konieczko https://doi.org/10.1007/BF00549306
  27. J. Adhesion Adhesive v.2 D. Briggs;C. R. Kendall https://doi.org/10.1016/0143-7496(82)90061-6
  28. J. Mater. Sci. v.22 F. Garbassi;E. Occhiello;F. Polato;A. Brown https://doi.org/10.1007/BF01233147
  29. J. Mater. Sci. v.22 F. Garbassi;E. Occhiello;F. Polato https://doi.org/10.1007/BF01160573
  30. American Association Textile Chemical Color Technical Manual; AATCC Test Method 100 v.55 AATCC
  31. J. Antibact. Antifung. Agents v.13 H. Kourai;H. Takechi;T. Horie;N. Uchiwa;K. Takeichi;I. Shibaski
  32. J. Antibact. Antifung. Agents v.22 H. Kourai;Y. Hasegawa;S. Goto;K. Nakagawa
  33. J. Antibact. Antifung. Agents v.22 H. Kourai;K. Oda;S. Goto;H. Takechi;K. Nakagawa