A Study on the Preparation of the Exfoliated Polyimide Nanocomposite and Its Characterization

박리형 폴리이미드 나노복합재료 제조와 특성에 관한 연구

  • 유성구 (영남대학교 공과대학 응용화학공학부) ;
  • 박대연 (영남대학교 공과대학 응용화학공학부) ;
  • 김영식 (영남대학교 공과대학 응용화학공학부) ;
  • 이영철 (한국생산기술연구원 화학/생물기술연구팀) ;
  • 서길수 (영남대학교 공과대학 응용화학공학부)
  • Published : 2002.05.01

Abstract

Diamines (p-phenylenediamine , m-phenylenediamine , and n-hexamethylenediamine) were intercalated into sodium montmorillonite for the further reaction with the anhydride end groups of polyamic acid. The anhydride terminated polyamic acid was synthesized using a mole ratio of 4,4'-oxydianilline : 1,2,4,5-benzene tetracarboxylic dianhydride = 1.50 : 1.53. The modified montmorillonite was reacted with polyamic acid terminated with anhydride group in N-methyl-2-pyrrolidone (polyamic acid/clay nanocomposite). After imidization, thin films of the polyimide/clay nanocomposite were prepared. From the results of XRD and TEM, we found that mono layered silicates were dispersed in polyimide matrix and those resultants were exfoliated nanocomposites. Mechanical properties of exfoliated polyimide nanocomposite were better than both those of pure polyimide and those of intercalated polyimide nanocomposite.

합성한 polyamic acid의 말단기인 anhydride기와 반응시키기 위하여 나트륨 몬모릴로나이트에 diamine (p-phenylenediamine, m-phenylenediamine, and n-hexamethylenediamine)을 삽입시켰다. 그리고 4,4'-oxydianilline : 1,2,4,5-benzene tetracarboxylic dianhydride의 몰비를 1.50 : 1.53으로 하여 말단기가 anhydride된 polyamic acid를 합성하였다. 이렇게 치환된 몬모릴로나이트를 말단기가 anhydride된 polyamic acid와 N-methyl-2-pyrrolidone용액에서 반응시켰다 (polyamic acid/clay nanocomposite) 이것을 열이미드화하여 polyimide/clay 나노복합재료를 제조하였다. XRD와 TEM으로 관찰한 결과 실리케이트 층이 단일층으로 폴리이미드 매트릭스에 잘 분산되어 있는 박리형 폴리이미드 나노복합재료가 제조되었음을 알 수 있었다. 이들의 기계적 특성을 관찰한 결과 박리형 폴리이미드 나노복합재료의 경우가 순수한 폴리이미드와 삽입형 폴리이미드 나노복합재료의 경우보다 우수함을 알 수 있었다.

Keywords

References

  1. Polymer(Korea) v.22 J. G. Ryu;G. R. Park;S. G. Lyu;J. H. Rhew;G. S. Sur
  2. Journal of the Institute of Industrial Technology v.26 S. G. Lyu;Y. H. Park;J. H. Rhew;G. S. Sur
  3. Polymer(Korea) v.23 H. K. Choi;Y. H. Park;S. G. Lyu;B. S. Kim;G. S. Sur
  4. Macromolecules v.32 L. J. Mathias;R. D. Davis;W. L. Jarrett https://doi.org/10.1021/ma991307p
  5. Polymer v.39 M. Biswas;S. Ray https://doi.org/10.1016/S0032-3861(97)10366-4
  6. J. Appl. Polym. Sci. v.71 Y. Ke;C. Long;Z. Qi https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1139::AID-APP12>3.0.CO;2-E
  7. Macromolecules v.30 F. R. Colomer https://doi.org/10.1021/ma9603847
  8. Chem. Mater. v.10 Z. Wang;T. J. Pinnavaia https://doi.org/10.1021/cm980448n
  9. J. Polym. Sci. Part B:Polym. Physics v.34 M. Sikka;L. N. Cerini;S. S. Ghosh;K. I. Winey https://doi.org/10.1002/(SICI)1099-0488(199606)34:8<1443::AID-POLB7>3.0.CO;2-T
  10. Polymer(Korea) v.23 H. K. Choi;Y. H. Park;S. G. Lyu;B. S. Kim;G. S. Sur
  11. Mater. Res. Soc. Symp. Proc. v.171 A. Okada;M. Kawasumi;A. Usuki;Y. Kosima;T. Kurauchi;O. Kamigaito
  12. Polymer Preprints v.28 A. Okada;M. Kawasumi;T. Kurauchi;O.Kamigaito
  13. Polymer(Korea) v.24 C. U. Lee;K. S. Bae;H. K. Choi;J. H. Lee;G. S. Sur