Thermal Properties and fracture Toughness of Difunctional Epoxy Resins Cured by Catalytic Initiators

촉매형 개시제로 경화된 이관능성 에폭시 수지의 열적 특성 및 파괴인성

  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 허건영 (한국화학연구원 화학소재연구부) ;
  • 이재락 (한국화학연구원 화학소재연구부)
  • Published : 2002.05.01

Abstract

In this work, two thermal cationic latent catalysts, i.e., triphenyl benzyl phosphonium hexafluoroantimonate (TBPH) and benzyl 2-methylpyrazinium hexafluoroantimonate (BMPH) were newly synthesized. And the thermal and mechanical properties of difunctional epoxy (diglycidylether of bisphenol h, DGEBA) resins initiated by 1 phr of either TBPH or BMPH catalyst were investigated. As experimental results, the epoxy/TBPH system showed higher curing temperature and critical stress intensity factor ($K_{IC}$) than those of epoxy/BMPH. This could be interpreted in terms of slow thermal diffusion rate and bulk structure of four phenyl groups in TBPH. However, the decomposed activation energy determined from Coats-Redfern method was lower in the case of epoxy/TBPH. This result was probably due to the fact that broken short chain structure was developed by steric hindrance of TBPH.

본 연구에서는 두 가지 열잠재성 양이온 촉매인 triphenyl benzyl phosphoinium hexa-fluoroantimonate (TBPH)와 benzyl 2-methylpyrazinium hexafluoroantimonate (BMPH)를 새로이 합성하였다. 그리핀 TBPH 혹은 BMPH 1 phr에 의해 개시되어진 이관능성 에폭시 수지(diglycidylether of bisphenol A, DGEBA)의 열 및 기계적 특성들을 연구하였다. 그 실험적인 결과들로서, 에폭시/TBPH 시스템은 에폭시/BMPH 시스템 보다 더 높은 경화 온도와 임계응력 세기인자 ($K_{IC}$) 값을 보였다. 이것은 TBPH에서 4개의 페닐기의 느린 열확산 속도와 벌크 구조 때문으로 사료된다. 그러나, Coats-Redfern 방법에 의하여 결정된 분해 활성화 에너지는 TBPH의 경우가 더 낮게 나타났다. 이러한 결과는 TBPH의 입체장애에 의해서 끊어진 짧은 사슬 구조가 발달되었기 때문인 것으로 사료된다.

Keywords

References

  1. Disigning with Plastic and Composites S. V. Rosato;D. P. Dimattia;D. V. Rosato
  2. J. Appl. Polym. Sci. v.78 G. H. Kwak;S. J. Park;J. R. Lee https://doi.org/10.1002/1097-4628(20001010)78:2<290::AID-APP80>3.0.CO;2-9
  3. Polym. Bull. v.39 S. Shin;J. Jang https://doi.org/10.1007/s002890050159
  4. Eur. Polym. J. v.34 M. Ghaemy;M. H. Khandani https://doi.org/10.1016/S0014-3057(97)00122-5
  5. Polymer v.39 Z. Zhong;S. Zheng;J. Huang;Q. Gue;J. Wei https://doi.org/10.1016/S0032-3861(97)00382-0
  6. Polymer v.30 C. B. Bucknall;A. H. Gilbert https://doi.org/10.1016/0032-3861(89)90107-9
  7. J. Appl. Polym. Sci. v.67 W. H. Park;J. K. Lee https://doi.org/10.1002/(SICI)1097-4628(19980207)67:6<1101::AID-APP18>3.0.CO;2-2
  8. Polym. J. v.29 Y. C. Kim;S. J. Park;J. R. Lee https://doi.org/10.1295/polymj.29.759
  9. J. Polym. Sci., Polym. Chem. v.37 J. V. Crivello https://doi.org/10.1002/(SICI)1099-0518(19991201)37:23<4241::AID-POLA1>3.0.CO;2-R
  10. J. Appl. Polym. Sci. v.80 S. Murai;Y. Nakano;S. Hayase https://doi.org/10.1002/1097-4628(20010411)80:2<181::AID-APP1085>3.0.CO;2-L
  11. Macromolecules v.34 T. Toneri;F. Sanda;T. Endo https://doi.org/10.1021/ma000759v
  12. Polymer(Korea) v.25 S. J. Park;G. Y. Heo;J. R. Lee;S. Y. Shim;D. H. Suh
  13. Polym. Compos. v.13 J. A. McGowen;L. J. Mathlas
  14. J. Polym. Sci. Polym. Chem. v.39 S. J. Park;M. K. Seo;J. R. Lee;D. R. Lee https://doi.org/10.1002/1099-0518(20010101)39:1<187::AID-POLA210>3.0.CO;2-H
  15. Organic Chemistry(4nd Ed.) R. J. Fessenden;J. S. Fessenden
  16. J. Appl. Polym. Sci. v.82 R. H. Lin;C. L. Chen;L. H. Kao;P. R. Yang https://doi.org/10.1002/app.2216
  17. J. Molecular Struc. v.339 H. J. Soscun Machado;A. Hinchliffe https://doi.org/10.1016/0166-1280(94)04108-5
  18. J. Polym. Sci. Polym. Phys. v.38 S. J. Park;T. J. Kim;J. R. Lee https://doi.org/10.1002/1099-0488(20000815)38:16<2114::AID-POLB50>3.0.CO;2-8
  19. Polym. Sci., Polym. Chem. v.37 D. Mathew;C. P. R. Nair;K. Krishnan;K. N. Ninan https://doi.org/10.1002/(SICI)1099-0518(19990415)37:8<1103::AID-POLA7>3.0.CO;2-X
  20. J.Appl.Polym.Sci. v.5 C. D. Doyle https://doi.org/10.1002/app.1961.070051506
  21. J. Mater. Sci. v.35 S. J. Park;M. S. Cho https://doi.org/10.1023/A:1004849110311
  22. Macromol. Mater. Eng. v.274 T. Glauser;M. Johansson;A. Hult https://doi.org/10.1002/(SICI)1439-2054(20000101)274:1<25::AID-MAME25>3.0.CO;2-L
  23. J. Polym. Sci. Polym. Phys. v.39 S. J. Park;H. C. Kim https://doi.org/10.1002/1099-0488(20010101)39:1<121::AID-POLB110>3.0.CO;2-N
  24. Stress Concentration Factors R. E. Peterson