Malic acid 함유 공중합체의 합성 및 필름표면의 RGD 고정화

RGD Fixation of Film Surface and Synthesis of Copolymer Comprising Malic acid

  • 이찬우 (호서대학교 공과대학 첨단산업기술전공) ;
  • 송경헌 (배재대학교 의류학부)
  • 발행 : 2002.05.01

초록

본 연구에서는 세포접착성에 관한 영향을 검토하기 위하여 L-malic acid (L-MA)와 glycolic acid (GA)의 복합단위로 된 3-(S)-[(dodecyloxycarbonyl)methyl] -1,4-dioxane-2,5-dione (DMD)의 합성 및 DMD와 L-lactide의 공중합을 촉매로서 tin (II) octanoate를 사용하여 행하였다. 얻어진 공중합체를 필름으로 제작하여 RGD고정화를 실시한 결과, 필름표면에 세포접착성 펩티드를 고정화할 수 있었고, MA단위의 도입량의 증가에 따라 RGD의 고정화량이 증가하는 것을 확인하였으며, glycolic acid-$\beta$-dodecylmalate-lactic acid (D-PGML)는 서서히 분해되어 장기간에 있어 잔류 및 축적이 발생하지 않아 생체재료로서 크게 기대된다.

To study the effect of polymer compositions on the cell adhesion, copolymers of 3-(S)-[(dodecyloxycarbonyl) methyl]-1,4-dioxane-2,5-dione (DMD) and L-lactide were made, where DMD was synthesized form L-malic acid (L-MA) and glycolic acid. Furthermore, the copolymerization of DMD and L-lactide was performed using tin(II) octanoate as a catalyst. As a result of fixing RGD on the copolymer films, the cell adhesive peptide was fixable on the surface of the film. It was found out that the amount of fixation of RGD also increases by the increase in the amount of MA unit introduction. Since it is gradually decomposed over a long period and neither remains nor accumulation occurs, glycolic acid-$\beta$-dodecylmalate -lactic acid (D-PGML) is greatly expected as a potential biomaterial with improved slow degradability.

키워드

참고문헌

  1. J. Controlled Release v.16 M. Vert;S. Li;H. Garreau https://doi.org/10.1016/0168-3659(91)90027-B
  2. Biomaterials v.15 M. Vert;J. Mauduit;S. Li https://doi.org/10.1016/0142-9612(94)90271-2
  3. J. Mate. Sci. Mater. Med. v.6 F. W. Cordewener;F. R. Rozema;R. R. Bos;G. Boering https://doi.org/10.1007/BF00146858
  4. J. Mater. Sci. Mater. Med. v.6 T. S. Leenstra;J. C. Maltha;A. M. Kuijpers-Jagtman https://doi.org/10.1007/BF00123368
  5. Macromolecules v.28 D. A. Barrear;E. Zylstra;P. T. Lansburg;R. Langer https://doi.org/10.1021/ma00106a004
  6. Makromol. Chem. v.193 P. J. A. I. Veld;P. J. Dijkstra;J. Feijen https://doi.org/10.1002/macp.1992.021931101
  7. Bull. Chem. Soc. Jpn. v.69 C. W. Lee;Y. Kimura https://doi.org/10.1246/bcsj.69.1787
  8. J. Bioact. Compat. Polym. v.1 D. B. Johns;R. W. Lenz;M. Vert https://doi.org/10.1177/088391158600100105
  9. Makromol. Chem. v.21 Y. Kimura;K. Sirotani;H. Yamane;T. Kitao https://doi.org/10.1021/ma00189a037
  10. Polymer v.34 Y. Kimura;K. Sirotani;H. Yamane;T. Kitao https://doi.org/10.1016/0032-3861(93)90335-8
  11. Nature v.309 M. D. Pierschbacher;E. Ruoslahti https://doi.org/10.1038/309030a0
  12. J. Am. Chem. Soc. v.54 W. H. Carothers;G. L. Dorougy;F. J. V. Natta https://doi.org/10.1021/ja01341a046