DOI QR코드

DOI QR Code

Production of Phytol, an ACAT Inhibitor, from Callus Culture of Lettuce (Lactuca sativa L.)

상추 (Lactuca sativa L.) callus로부터 ACAT 억제 활성물질, phytol의 생산

  • An, Kwang-Hee (Department of Agronomy, Plant Metabolism Research Center, Kyunghee University) ;
  • Jang, Tae-O (Department of Agronomy, Plant Metabolism Research Center, Kyunghee University) ;
  • Baek, Nam-In (Department of Agronomy, Plant Metabolism Research Center, Kyunghee University) ;
  • Kim, Se-Young (Department of Agronomy, Plant Metabolism Research Center, Kyunghee University)
  • 안광희 (경희대학교 농학과, 식물대사연구센터) ;
  • 장태오 (경희대학교 농학과, 식물대사연구센터) ;
  • 백남인 (경희대학교 농학과, 식물대사연구센터) ;
  • 김세영 (경희대학교 농학과, 식물대사연구센터)
  • Published : 2002.03.01

Abstract

The possibility for mass production of phytol, inhibitory diterpene against ACAT (Acyl-CoA: Cholesterol acyltransferase) was investigated by using callus culture of lettuce. The callus were induced from lettuce cotyledon explants on MS medium containing 0.5 mg.L$^{-1}$ NAA after 4 week's culture. Adventitious roots were formed from the explants on MS medium containing 0.5 mg.L$^{-1}$ IBA or 1.0 mg.L$^{-1}$ NAA. Adventitious shoots and roots were emerged from the callus when the callus was transferred to MS medium containing auxin alone, or with cytokinin. The plant growth regulators and their concentrations for the organogenesis were 1.0 mg.L$^{-1}$ NAA, 0.1 mg.L$^{-1}$ BA, 0.5 mg.L$^{-1}$ NAA with 0.1 mg.L$^{-1}$ kinetin, or 0.5 g.L$^{-1}$ 2.4-D with 1.0 mg.L$^{-1}$ kinetin. Analyses of chlorophyll contents showed that chlorophyll contents were higher in morphogenic calli than in non-morphogenic calli. However, the chemical analyses of gas chromatography indicated that phytol contents were not proportionate to the chlorophyll contents of callus. The content of phytol was higher in callus than in lettuce cotyledon.ledon.

상추의 기내 callus 배양으로부터 ACAT (Acyl-CoA: Cholesterol acyltransferase) 억제 활성물질로 알려진 phytol 의 생산가능성이 연구되었다. Callus는 0.5mg.L$^{-1}$ NAA가 첨가된 MS 배지에 4주간 치상된 자엽 절편체로부터 유도되었으며, 다양한 수준의 chlorophyll을 함유하고 있었다. Phytol이 chlorophyll분자를 구성하는 물질로 알려져 있음에 도 불구하고, phytol의 추출량은 녹색의 자엽에서 보다 callus 에서 높게 나타났다. GC 분석결과, phytol의 추출량은 callus의 chlorophyll 함량과 비례하지 않는 것으로 나타났으며, callus의 chlorophyll 함량수준은 callus의 형성능과 관련이 있는 것으로 사료되었다. 본 연구의 결과는 phytol의 기내생산에 있어서 상추의 callus 배양의 잠재성을 제시한다 하겠다.

Keywords

References

  1. Alconero, R. (1983) Regeneration of plants from cell suspensions of Lactuca saIigna. Iactuca sativa, and lac tuca serriola Hort Science 18(3):305-307 https://doi.org/10.1016/0304-4238(83)90012-2
  2. Allan, E. J., and M. W. Fowler. (1985) Biologically active plant secondary metabolites-perspectives for the future. Chemistry and Industry:408-410
  3. Anna, J. B., Hans, B. and Klaus, P. A. (2001) Biosynthesis of hemi-and monoterpene moieties of isoprenyl phenyl ethers from the liverwort Trichocolea tomentella. Phytochemistry 57:7-14 https://doi.org/10.1016/S0031-9422(01)00002-4
  4. Barwale, U. B., H. R. Kerns and J. M. Widholm. (1986) Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta 167:473-481 https://doi.org/10.1007/BF00391223
  5. Bikram, S., Pawan, K. A. and Raghunath, S. T. (1989) Isolation of trans-Phytol from Phyllanthus niriri. Phytochemistry 15:1076 https://doi.org/10.1016/S0031-9422(00)84413-1
  6. Bohlin, L. (1992) Antispasmodic activity of $\beta$-damascenone and E-phytol isolated from Ipomoea pescaprae. Planta Med. 58:19-21 https://doi.org/10.1055/s-2006-961381
  7. Cho, Y. H., Ahn, S. J., Park, K. Y., Yoo, M. A. and Lee, W. H. (1993) Effects of phytol on the mutagenicity of UV and EMS in SaImonelIa and DrosophiIa mutation assaying systems. Environ. mutag Carcin., 13:92-100
  8. Halperin W. (1966) Alternative morphogenesis events in cell suspensions. Am J Bot 53:443-453 https://doi.org/10.2307/2440343
  9. Jang, T, O. and Baek, N. I. (2002) Isolation of ACAT (Acyl-CoA: Cholesterol Acyltransferase) Inhibitor From the Leaves of Lactuca sativa L. Korean J. Agri. 45:2
  10. Jung, E. B. and Shin, M. K. (1990) In 'Hyang Yak Dae Sa Jun' . Young Lim Sa, Seoul, Korea, pp 1060
  11. Kim, K. H., Chang, M. W., Park, K. Y., Rhee, S. H., Rhew, T. H., and Sunwoo, Y. I. (1993) Antitumor activity of phytol identified from perilla leaf and its augmentative effect on cellular immune response. Korean J. Nutr. 26:379-389
  12. Lawson, T., Nunnally, J., Walker, B., Brensnick, E., Wheeler, D. and Wheeler, M. (1989) Isolation of compounds with antimutagenic activity from Savoy Chieftain cabbage, J. Agri. Food Chem 37:1363-1367 https://doi.org/10.1021/jf00089a034
  13. Lee, E. K., Park, S. K., Ryu, J, W., Sa, D. M. Lee, M, S. and Leem, K. O. (1996) In 'Introduction of Resource Plant' . Su II. Seoul. Korea:25-257
  14. Lee, K. L., Lee, S. H. and Park, K. Y. (1999) Anticancer Activity of Phytol and Eicosatrienolic Acid Identified from Perrila Leaves. J. Korean Soc. Food Sci. Nutr. 28:1107-1112
  15. Molisch, H. (1937) Der Einfluss einer Pflanze auf die andere-allelopathie. Fisher, Jena
  16. Santos, I., I. Guimaraes and R. Salema. (1994) Somatic embry-ogenesis and plant regeneration of Nerium olender. Plant Cell Tiss. Organ Cult. 37:3-86
  17. Sharma, P. and M.V. Rajam. (1995) Genotype, explant and position effects on organogenesis and embryogenesis in eggplant (Solanum melongena L.). J. Exp. Bot. 46:135-141 https://doi.org/10.1093/jxb/46.1.135
  18. Sinnot, E. W. and R. Bloch. (1941) Division in vacuolated plant cells. Amer. J. Bot. 28:225-232 https://doi.org/10.2307/2436737
  19. Taya M, Mine K, Kino-oka M, Tone S, lchi T. (1992) Production and release of pigments by culture of transformed hairy root of Red beet. J Ferment Bioeng 73:31-36 https://doi.org/10.1016/0922-338X(92)90227-L
  20. Zhou X, Han Y, Yang W, Xi T. (1992) Somatic embryogenesis and analysis of peroxidase in cultured lettuce (Lactuca sativa L.) cotyledons. Ann Bot 69:97-100 https://doi.org/10.1093/oxfordjournals.aob.a088328