Abstract
Geometric shape morphing is an interesting geometric operation that interpolates two geometric shapes to generate in-betweens. It is well known that Minkowski operations can be used to test and build collision-free motion paths and to modify shapes in digital image processing. In this paper, we present a new geometric modeling technique to control the morphing on geometric shapes based on Minkowski sum. The basic idea develops from the linear interpolation on two geometric shapes where the traditional algebraic sum is replaced by Minkowski sum. We extend this scheme into a Bezier-like control structure with multiple control shapes, which enables the interactive control over the intermediate shapes during the morphing sequence as in the traditional CAGD curve/surface editing. Moreover, we apply the theory of blossoming to our control structure, whereby our control structure becomes even more flexible and general. In this paper, we present mathematical models of control structure, their properties, and computational issues with examples.