Overcoming of Barriers to Transformation in Monocot Plants

  • Toyama Koichi (College of Agriculture and Life Science, Sunchon National University) ;
  • Bae, Chang-Hyu (College of Agriculture and Life Science, Sunchon National University) ;
  • Seo, Mi-Suk (College of Agriculture, Osaka Prefecture University, Japan) ;
  • Song, In-Ja (College of Agriculture and Life Science, Sunchon National University) ;
  • Lim, Yong-Pyo (Kumho Life and Environmental Science Laboratory) ;
  • Song, Pill-Soon (College of Agriculture, Chungnam National University) ;
  • Lee, Hyo-Yeon (College of Agriculture and Life Science, Sunchon National University)
  • Published : 2002.12.01

Abstract

Agrobacterium-mediated transformation has been unsuccessful for monocot plants except for a few important crops such as barley, rice, maize and wheat. We discussed here that a successful transformation of monocots demands certain critical conditions. The requirements for an efficient transformation are a selection of target tissues competent for plant regeneration and Agrobacterium-infection, and various factors promoting Agrobacterium-infection. The factors were divided into two to activate Agrobacterium and to increase plant cell's susceptibility against Agrobacterium. Optimization of these factors significantly increased transformation efficiency of zoysia grass and rice plants. A technical improvement in transformation system for monocots will promote improvement of the breed as well as a study of gene functions in monocots.

Keywords

References

  1. Plant Cell Rep v.104 Transgenic plants of blue grama grass, Bouteloua gracilis (H.B.K.)Lag. ex Steud., from microprojectile bombardment of highly chlorophyllous embryogenic cells Aguado-Santacruz GA;Rascon-Cruz Q;Cabrere-Ponce JL;Matinez-Hernandez A;Olalde-Portugal V;Herrea-Estrella L
  2. Plant Cell Rep v.19 Agrobacterium-mediated genetic transformation of a phalaenopsis orchid. Balarmino MM;Mii M https://doi.org/10.1007/s002990050752
  3. Kor J Plant Tissue Cult v.28 Efficient plant regeneration using mature seedderived callus in Zoysiagrass (Zoysia japonica Steud.) Bae CH;Toyama K;Lee SC;Lim YP;Kim HI;Song PS;Lee HY
  4. Crop Sci v.38 Applications of biotechnology in turgfrass genetic improvement Chai B;Sticklen MB https://doi.org/10.2135/cropsci1998.0011183X003800050031x
  5. Plant Physiol v.115 Genetic transformation of weat mediated by Agrobacterium tumefaciens Cheng M;Fry JE;Pang S;Zhou H;Hironaka CM;Duncan DR;Conner TW;Wan Y https://doi.org/10.1104/pp.115.3.971
  6. Plant Sci v.148 High-frequency transformation of oat via microprojectile bombardment of seedderived highly regenerative cultures Cho M-J;Jiang W;Lemaux PG https://doi.org/10.1016/S0168-9452(98)00162-9
  7. Plant Sci v.138 Transformation of recalcitrant barley cultivars through improvement of regene-rability and decreased albinism Cho M-J;Jiang W;Lemaux PG
  8. Plant Cell Rep v.20 Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues Cho M-J;Ha CD;Lemaux PG https://doi.org/10.1007/s002990000238
  9. Plant Cell Rep v.20 Transformed T0 orchardgrass (Dactylis glomerate L.) plants produced from highly regenerative tissues derived from mature seeds Cho M-J;Choi H-W;Lemaux PG https://doi.org/10.1007/s002990100330
  10. Plant Cell Rap v.18 Cotransformed, diploid Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium temulentum (darnel) plants produced by microprojectile bombardment Dalton SJ;Bettany AJE;Timms E;Morris P https://doi.org/10.1007/s002990050649
  11. Bot Rev v.42 The host range of crown gall De Cleene M;Deley J https://doi.org/10.1007/BF02860827
  12. Curr Biol v.1 Resistance response physiology and signal transduction Dierk S
  13. Plant Cell Rep v.17 Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato Ding L-C;Hu C-Y;Yeh K-W;Wang P-J https://doi.org/10.1007/s002990050497
  14. Mol Breeding v.2 Agrobacterium-mediated transformation of Javanica rice Dong J;Teng W;Buchholz WG;Hall TC https://doi.org/10.1007/BF00564204
  15. Plant Cell Rep v.10 Patterns of transformation intensity on flax hypocotyls inoculated with Agrobacterium tumefaciens Dong J-Z;McHughen A
  16. Plant Mol Biol v.18 Dissection of a pollen-specific promoter from maize by transient transformation assays Hamilton DA;Roy M;Rueda J;Sindhu RK;Sanford J;Mascarenhas JP https://doi.org/10.1007/BF00034950
  17. Plant J v.6 Efficient transformation of rice (Oryza sativa L.) mediated by Agrobac-terium and sequence analysis of the boundaries of the T-DNA. Hiei Y;Ohta S;Komari T;Kumashiro T https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  18. Science v.277 A simple and general method of transgerring genes into plants Horsch RB;Ery JE;Hoffmann NL;Eichholtz D;Rogers SG;Fraley RT https://doi.org/10.1126/science.227.4691.1229
  19. Plant Cell Rep v.17 Transgenic Japanese lawngrass (Zoyia japonica Steud.) plants regenerated from protoplats Inokuma C;Sugiura K;Imaizumi N;Cho C https://doi.org/10.1007/s002990050403
  20. Nature Biotechnol v.14 High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens Ishida Y;Saito H;Ohta S;Hiei Y;Komari T;Kumashiro T https://doi.org/10.1038/nbt0696-745
  21. Congress on In Vitro Biology Reduction of genotype limitation in wheat (Triticum aestivum L.) transforma-tion. Kim H-K;Lemaux PG;Buchanan BB;Cho M-J
  22. Plant Sci v.115 Turfgrass biotechnology Lee L https://doi.org/10.1038/nbt0293-194
  23. Plant Cell Rep v.19 Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli Montoro P;Teinseree N;Rattana W;Kongsawadworakul P;Michaux-Ferriere N https://doi.org/10.1016/0168-9452(96)04338-5
  24. Biotechnology v.11 Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis Koziel MG;Beland GL;Bowman C;Carozzi NB;Crenshaw R;Crossland L;Dawson J;Desai N;Hill M;Kadwell S https://doi.org/10.1007/s002990000208
  25. Physiol Plant v.15 A revised medium for rapid growth and bio-assays with tobacco tissue cultures Murashige T;Skoog F https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  26. Plant Cell Rep v.15 genetic transformation and gybridization: Whisker-mediated trans-formation of embrygenic callus of maize Petolino JF;Hopkins NL;Kosegi BD;Shokut M https://doi.org/10.1007/s002999900180
  27. Plant Cell Rep v.15 Transgenic plant production mediated by Agrobacterium in Indica rice Rashid H;Yokoi K;Toriyama K;Hinata K https://doi.org/10.1007/BF00232216
  28. Nature v.318 Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens Stachel SE;Messens E;Van Montagu M;Zambryski P https://doi.org/10.1038/318624a0
  29. Korean J Plant Biotechnology v.29 Investifation of transformation dfficiency of rice using Agrobacterium tumefaciens and high transformation of GPAT (glycerol-3-phosphate acyltransferase) gene relative to chilling tolerance Seo M-S;Bae C-H;Choi D-O;Rhim S-L;Seo S-C;Song P-S;Lee H-Y
  30. Proc. Natl Acad Sci v.87 Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signals molecules and monosac charides Shimoda N;Toyoda-Yamamoto A;Nagamine J;Usami S;Katayama M;Sakagami Y;Machida Y
  31. Maize protoplast culture, in the maize handbook Sillito R;Carswell G;Kramer CM;Freeling M(ed);Wabot V(ed)
  32. Plant Cell Rep v.20 Transformation of bahiagrass (Paspalum notatum Flugge) Smith RL;Grando MF;Li YY;Seib JC;Shatters RG https://doi.org/10.1007/s00299-001-0423-y
  33. J Plant Physiol v.145 Transgenic tall fescue (Festuca arundinacea) and red gescue (P. rubra) plants from microprojectile bombardment of embryogenic supension cells Spangenberg G;Wang ZY;Wu XL;Nagel J;Iglesias VA;Potrykus I https://doi.org/10.1016/S0176-1617(11)81283-6
  34. Plant Sci v.108 Transgenic perenial rygrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells Spangenberg G;Wang ZY;Wu XL;Nagel J;Potrykus I https://doi.org/10.1016/0168-9452(95)04135-H
  35. Plant Sci v.161 Production of transgenic plants of the Liliaceous ornamental plant Agapanthus praecox ssp. orientalis (Leighton) Leighton, via, Agrobacterium-mediated transformation of embryogenic calli Suzuki S;Supaibulwatana K;Mii M;Nakano M https://doi.org/10.1016/S0168-9452(01)00393-4
  36. Nature v.318 Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens Stachel SE;Messens E;Van Montagu M;Zambryski P https://doi.org/10.1038/318624a0
  37. Plant J v.11 Agrobacterium tumefaciens-mediated barley trans-formation Tingay S;McElroy D;Kalla R;Fieg S;Wang M;Thomton S;Brettel R https://doi.org/10.1046/j.1365-313X.1997.11061369.x
  38. Plant Physiol v.100 Expression of a maize ubiquitin gene promotor-bar chimeric gene in transgenic rice plants Toki S;Takamatsu S;Nojitri C;Ooda S;Anzai H;Iwata M;Christensen AH;Quail PH;Uchimiya H https://doi.org/10.1104/pp.100.3.1503
  39. Theol Appl Genet v.70 The effect of parental genotype on intiation of embryogenic callus from elite maize (Zeamaize L.) germplasm. Tomes DT;Smith OS https://doi.org/10.1007/BF00305983
  40. Bio/Technol v.6 Transgenic rice plants after direct gene transfer into protoplasts Toritama K;Arimoto Y;Uchimiya H;Hinata K https://doi.org/10.1038/nbt0988-1072
  41. An dfficient transformation system for herbicide tolerant zoysiatgrass (Zoysia japonica steud.) mediated by Agrobacterium tumefaciens Toyama K;Bae C-H;Kang J-G;Lim Y-P;Adachi T;Song P-S;Lee H-Y
  42. Theol Appl Genet v.97 Efficient transformation of rice protoplasts mediated by a synthetic polycationic amino polymer Tsugawa H;Otsuki Y;Suzuki M https://doi.org/10.1007/s001220050986
  43. Plant Sci v.130 Plasmolysis of precultured immature embryos improves Agrobacterium mediated gene transfer to rice (Oryza Sativa L.) Uze M;Wunn J;Puonti0Kaerlas J;Ptrykus I;Sautter C https://doi.org/10.1016/S0168-9452(97)00211-2
  44. BioTechnology v.10 Herbgicide resistant fertile transgenic wheat plants obtained bymicroprojectille bombardment of regenerabgle embryogenic callus Vasil V;Castillo AM;Fromm ME;Vasil IK https://doi.org/10.1038/nbt0692-667
  45. J Bacteriol v.170 Glycine betaine allows enhanced induction of the Agrobacterium tumefaciens vir genes by acetosyringone at low pH Vernade D;Herrera-Estrella A;Wang K;Van Montagu M https://doi.org/10.1128/jb.170.12.5822-5829.1988
  46. Plant Cell Rep v.20 Efficient biolistic transgormation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomanose isomerase gene, pmi, as the selectable marker Wright M;Dawson J;Dunder E;Suttie J;Reed J;Kramer C;Chang Y;Novitzky R;Wang H;Artim-Moore L https://doi.org/10.1007/s002990100318
  47. Plant Cell Rep v.16 Efficient selection and regeneration of creeping bentgrass transformants following particle bombard-ment Xiao L;Ha S-B https://doi.org/10.1007/s002990050337
  48. Plant Cell Rep v.18 Genetic transformation of commercial cultivars of oat (Avena sation L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derlived from germinated seedings Zhang S;Cho M-J;Koprek T;Yun R;Bregitzer P;Lemaux PG https://doi.org/10.1007/s002990050691