DOI QR코드

DOI QR Code

Plant Regeneration of Major Cultivars of Sweetpotato (Ipomoea batatas) in Korea via Somatic Embryogenesis

체세포배발생을 통한 국내 주요 고구마 품종의 식물체 재분화

  • 권은정 (한국생명공학연구원 식물세포공학연구실, 목원대학교 생명과학과) ;
  • 권석윤 (환경생명공학연구실) ;
  • 김문자 (목원대학교 생명과학과) ;
  • 안영섭 (호남농업시험장 목포시험장) ;
  • 이준설 (호남농업시험장 목포시험장) ;
  • 정병춘 (호남농업시험장 목포시험장) ;
  • 곽상수 (환경생명공학연구실) ;
  • 이행순 (한국생명공학연구원 식물세포공학연구실)
  • Published : 2002.09.01

Abstract

An efficient plant regeneration system of major cultivars of sweetpotato (Ipomoea batatas (L.) Lam.) in Korea via somatic embryogenesis was established. Embryogenic calli were formed from shoot apical meristems of sweetpotato cultivars when cultured on LS medium supplemented with 1 mg/L auxin (2,4-D, picloram, dicamba). Among three kinds of auxin, 1 mg/L 2,4-D showed the highest embryogenic calli induction rate. After 4 weeks of cultures on LS medium supplemented with 1 mg/L 2,4-D, embryogenic calli induction rates of Sinhwangmi, Zami, Yulmi, and White Star were 86%, 78%, 76%, and 80%, respectively. Upon transfer onto LS basal medium, most of somatic embryos developed into plantlets. Regenerated plantlets were transplanted to potting soil and grown to mature plants in a greenhouse.

4종류 고구마 품종을 대상으로 정단분열조직 배양에 의한 배발생 캘러스 유도, 이들로부터 고빈도의 체세포배발생과 식물체 재분화 체계를 확립하였다. 자미. 율미, 신황미, 및 화이트 스타의 생장점을 LS 기본배지에 1 mg/L auxin (2,4-D, picloram, dicamba)가 첨가된 배지에서 배양하였다. 그 결과 2,4-D 첨가 배지에서 가장 높은 빈도로 배발생 캘러스가 유도되었으며, 배양 4주째에 유도된 배발생 캘러스의 빈도는 신황미, 자미, 율미. 및 화이트 스타에서 86%, 78%, 76%, 및 80%를 각각 나타내었다. 2,4-D 첨가 배지에서 얻어진 배발생 캘러스를 2.4-D를 제거한 배지로 옮겨 주어 체세포배를 유도하였으며, 이 체세포배의 90% 이상이 완전한 식물체로 발달하였다. 이러한 결과는 정단분열조직 배양으로부터의 체세포배 발생 방법이 광범위한 고구마 품종에 적용될 수 있을 뿐만 아니라 분자육종을 통한 신기능성 고구마 품종개발에 효율적으로 이용될 수 있을 것으로 기대된다.

Keywords

References

  1. AI-Mazrooei S, Bhatti MH. Henshaw GG, Taylor NJ, Blakesley D (1997) Optimization of somatic embryogenesis in fourteen cultivars of sweetpotato (Ipomoea batatas (L.) Lam). Plant Cell Rep 16:710-714 https://doi.org/10.1007/s002990050307
  2. Cantliffe DJ, Uu JR, Schultheis JR (1987) Development of artificial seeds of sweetpotato for clonal propagation through somatic embryogenesis. In : Smith WH Smith, Frand JR, (eds), Methane from Biomass: A Systems Approach, Elsevier Applied Sci, New York, PP 183-195
  3. Cavalcante Alves JM, Sihachaker D, Allot M, Tizroute S, Mussio I, Servaes A, Ducreux G (1994) Isoenzyme modifications and plant regeneration through somatic embryogenesis in sweetpotato (Ipomoea batatas (L.) Lam.). Plant Cell Rep 13:437-441
  4. Chee RP, CantIiffe DJ (1988a) Somatic embryony patterns and plant regeneration in Ipomoea batatas Poir. In Vitro Cell Dev Biol 24:955-958 https://doi.org/10.1007/BF02623910
  5. Chee. RP, Cantliffe. DJ (1988b) Selective enhancement of Ipomoea batatas Poir embryogenic and non-embryogenic callus growth and production of embryos in liquid culture. Plant Cell Tissue Organ Cult 15: 149-159 https://doi.org/10.1007/BF00035756
  6. Chee RP and Cantliffe DJ (1989) Composition of embryogenic suspension cultures of Ipomoea batatas Poir and production of individualized embryos. Plant Cell Tissue Organ Cult 17:39-52
  7. Desamero NV, Rhodes BB, Decoteau DR, Bridges WC (1994) Picolinic acid-induced direct somatic embryogenesis in sweetpotato. Plant Cell Tissue Organ Cult 37: 103-111 https://doi.org/10.1007/BF00043603
  8. Jarret RL, Salazar S, Fernadez AR (1984) Somatic embryogenesis in sweetpotato. HortScience 19:397-398
  9. Linsmaier EM, Skoog F (1965) Organic growth factor requirement of tobacco tissue culture. Physiol Plant 18:100-127 https://doi.org/10.1111/j.1399-3054.1965.tb06874.x
  10. Liu JR, CantIiffe DJ (1984) Somatic embryogenesis and plant regeneration in tissue cultures of sweetpotato (Ipomoea batatas Poir). Plant Cell Rep 3: 112-115 https://doi.org/10.1007/BF02441013
  11. Liu JR, CantIiffe DJ (1985) Tissue culture propagation development and its application to energy crops. Proceeding of 1984 International Gas Research Conference pp 622-629
  12. Liu JR, Cantliffe DJ, Simonds SC, Ruan JF (1989) High frequency somatic embryogenesis from cultured shoot apical meristem domes of sweetpotato (Ipomoea batatas). SABRAO J 21:93-101
  13. Min SR, Liu JR, Rho TH, Kim CH, Ju JI (1994) High frequency somatic embryogenesis and plant regeneration in tissue culture of Korean cultivar sweetpotato. Korean J Plant Tissue Cult 21:157160
  14. Murashige. T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  15. Newell CA, Lowe JM, Merrywether A, Rooke LM, Hamiltone WDO (1995) Transformation of sweetpotato (Ipomoea batatas (L.) Lam.) with Agrobacterium tumefaciens and regeneration of plants expressing cowpea trypsin inhibitor and snowdrop lectin. Plant Sci 107:215-227 https://doi.org/10.1016/0168-9452(95)04109-8
  16. Otani M, Shimada T (1996) Efficient embryogenic callus formation in sweetpotato (Ipomoea batatas (L.) Lam.) using Agrobacterium tumefaciens. Plant Biotechnol 15:11-16
  17. Prakash CS, Varadarajan U (1992) Genetic transformation of sweetpotato by particle bombardment. Plant Cell Rep 11:53-57
  18. Tang F, Li K, Lan L, Zhang Q (1993) Somatic embryogenesis and plant regeneration in sweetpotato. Acta Agro Sinica 19:372-375
  19. Tsay HS, Tseng MT (1979) Embryoid formation and plantlet regeneration from anther callus of sweetpotato. Bot Bull Acad Sinica 20:117-122
  20. Zheng Q, Dessai AP, Prakash CS (1996) Rapid and repetitive plant regeneration in sweetpotato via somatic embryogenesis. Plant Cell Rep 15:381-385 https://doi.org/10.1007/BF00232059

Cited by

  1. Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling vol.19, pp.3, 2007, https://doi.org/10.1007/s11032-006-9051-0
  2. Transgenic Sweetpotato (Ipomoea batatas) Expressing Spike Gene of Porcine Epidemic Diarrhea Virus vol.32, pp.4, 2005, https://doi.org/10.5010/JPB.2005.32.4.263
  3. Expression of Arabidopsis NDPK2 increases antioxidant enzyme activities and enhances tolerance to multiple environmental stresses in transgenic sweetpotato plants vol.24, pp.3, 2009, https://doi.org/10.1007/s11032-009-9286-7
  4. SCOF-1-expressing transgenic sweetpotato plants show enhanced tolerance to low-temperature stress vol.49, pp.12, 2011, https://doi.org/10.1016/j.plaphy.2011.09.002
  5. Expression of both CuZnSOD and APX in chloroplasts enhances tolerance to sulfur dioxide in transgenic sweet potato plants vol.338, pp.5, 2015, https://doi.org/10.1016/j.crvi.2015.03.012