DOI QR코드

DOI QR Code

Isolation of cDNA Encoding Low Temperature-inducible L-asparaginase from Soybean (Glycin max)

저온 스트레스에 발현이 유도되는 콩의 L-asparaginase 유전자의 분리

  • Park, Seong-Whan (Faculty of Natural Resources and Life science, Dong-A University) ;
  • Kim, Kee-Young (Faculty of Natural Resources and Life science, Dong-A University) ;
  • Chen, Liang (Faculty of Natural Resources and Life science, Dong-A University) ;
  • Lee, Jai-Heon (Faculty of Natural Resources and Life science, Dong-A University)
  • 박성환 (동아대학교 생명자원과학부) ;
  • 김기영 (동아대학교 생명자원과학부) ;
  • 진량 (동아대학교 생명자원과학부) ;
  • 이재헌 (동아대학교 생명자원과학부)
  • Published : 2002.06.01

Abstract

Suppression subtractive hybridization (SSH) was used to isolate wound-induced cDNAs from wounded soybean. One of low-temperature-inducible cDNA, slti182 showed high homology with genes encoding 1-asparaginase. The full length cDNA of slti182, deginated GmASP1, is 1258 bp long and contains an open reading frame consisted of 326 amino acids. CmASP1 protein showed the highest identity (84%) with putative asparaginase from A. thaliana (AB012247), but it showed only 55% identity with another isoform of A. tathaliana (Z34884). The expression of GmASP1 during low temperature stress started to increase 3 hours after treatment, reached the maximum at 6 hour, and then decreased to the initial level at 48 hours. The amount of GmASP1 transcripts increased again when low-temperature-treated plants were transferred to room temperature, The present study suggests that GmASP1 may function to accelerate the protein synthesis which is important in the early response to low temperature.

Suppression subtractive hybridization (SSH)를 통해 저온에 의해 발현이 유도되는 cDNA들을 분리하였고, 그 중 하나인 slti182는 asparaginase 유전자들과 높은 유사성을 보였다. Slti182의 전체 cDNA인 GmASP1은 1258 bp 길이에 326개 아미노산으로 구성된 긴 Open reading frame (ORF)를 포함하고 있었다. GmASP1 단백질은 애기장대의 putative asparaginase (AB012247)와 84%의 유사성을 보였으나, 애기장대의 다른 isoform(Z34884)와는 55%의 유사성을 나타내었다. GmASP1 유전자는 저온 처리 후 3시간째부터 발현이 유도되어 6시간째에 최대발현을 나타내었고, 이후 점차 감소하여 48시간에는 저온처리전 수준으로 되돌아왔다. 또한, 식물체를 저온에서 48시간 둔 후에 다시 상온으로 옮겼을 때, 정상수준으로 떨어진 GmASP1의 발현이 다시 증가하는 양상을 보였다. 이러한 결과로 볼 때, GmASP1이 저온 스트레스에 반응 초기의 단백질 합성 촉진에 중요한 역할을 할 것으로 사료된다.

Keywords

References

  1. Browse J, Xin Z (2001) Temperature sensing and cold acclimation. Curr Opin Plant Biol 4:241-246 https://doi.org/10.1016/S1369-5266(00)00167-9
  2. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptation to environmental stress. Plant Cell 7:1099-1111 https://doi.org/10.1105/tpc.7.7.1099
  3. Borek D, Podkowinski J, Kisiel A, Jaskolski M (1999) Isolation and Characterization of cDNA Encoding L-asparaginase from Lupinus luteus (Accession No. AF112444). (PGR99-050) Plant Physiol 119:1568
  4. Casado A, CabaIIero JL, Franco AR, Cardenas J, Grant MR, Munoz-Blanco J (1995) Molecular cloning of the gene encoding the L-asparaginase gene of Arabidopsis thaliana. Plant Physiol 108:1321-1322 https://doi.org/10.1104/pp.108.3.1321
  5. Church GM, Gilbert (1984) Genomic sequencing. Proc Nat'l Acad Sci USA 81:1991-1995 https://doi.org/10.1073/pnas.81.7.1991
  6. Ferullo JM, Vezina LP, Rail JR, Laberge S, Nadeau P, Castonguay Y (1997) Differential accumulation of two glycine-rich proteins during cold-acclimation of alfalfa. Plant Mol Biol 33:625-633 https://doi.org/10.1023/A:1005781301718
  7. Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol 41:187-223 https://doi.org/10.1146/annurev.pp.41.060190.001155
  8. Hajela RK, Horvath DP, Gilmoure SJ, Thomashow MF (1990) Molecular cloning and expression of cor (cold-regulated) genes in Arabidopsis thaliana. Plant Physiol 93:1246-1252 https://doi.org/10.1104/pp.93.3.1246
  9. Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997) Antioxidant enzyme and compound responses to chilling stress and their combining abilities in differentially sensitive maize hybrids. Crop Sci 37:857-863 https://doi.org/10.2135/cropsci1997.0011183X003700030027x
  10. Kim JC, Lee SH, Cheong YH, Yoo C-M, Lee SI, Chun HJ, Yun D-J, Hong JC, Lim CO, Cho MJ (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25:247-259 https://doi.org/10.1046/j.1365-313x.2001.00947.x
  11. Kishitani S, Watanabe K, Yasuda S, Arakawa K, Takabe T (1994) Accumulation of glycinebetaine during cold accumulation and freezing tolerance in leaves of winter and spring barley plants. Plant Cell Environ 17:89-95 https://doi.org/10.1111/j.1365-3040.1994.tb00269.x
  12. Monroy AF, Castonguay Y, Laberge S, Sarhan F, Vezina LP, Dhindsa RS (1993) A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiol 102:873-879 https://doi.org/10.1104/pp.102.3.873
  13. Moon BY, Hong YN, Kwon YM (1989) Changes in the compositions of amino acids in the rice seedlings under low temperature. Kor J Bot 32:235-245
  14. Neven LG, Haskell DW, Hofig A, Li Q-B, Guy CL (1993) Characterization of spinach gene responsive to low temperature and water stress. Plant Mol Biol 21:291-305 https://doi.org/10.1007/BF00019945
  15. Pinhero RG, Rao MV, Paliyath G, Murr DP, Fletcher RA (1997) Changes in activities of antioxidant enzymes and their relationship to genetic and padobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol 114:695-704 https://doi.org/10.1104/pp.114.2.695
  16. Rorat T, Irzykowski W, Grygorowicz WJ (1997) Identification and expression of novel cold induced genes in potato (Solanum tuberosum). Plant Sci 124:69-78 https://doi.org/10.1016/S0168-9452(96)04595-5
  17. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217-223 https://doi.org/10.1016/S1369-5266(00)80068-0
  18. Shure M, Wessler S, Fedoroff N (1983) Molecular identification and isolation of Waxy locus in maize. Cell 35:225-233 https://doi.org/10.1016/0092-8674(83)90225-8
  19. Sieciechowicz KA, Joy KW, Ireland RJ (1988) The metabolism of asparagine in plants. Phytochemistry 27:663-671 https://doi.org/10.1016/0031-9422(88)84071-8
  20. Sodek L, Lea PJ (1993) Asparaginase from the testa of developing lupin and pea seeds. Phyrochemistry 34:51-56 https://doi.org/10.1016/S0031-9422(00)90781-7
  21. Solecka D, Boudet A-M, Kacperska A (1999) Phenylpropanoid and anthocyanin changes in low-temperature treated winter oilseed rape leaves. Plant Physiol Biochem 37:491-496 https://doi.org/10.1016/S0981-9428(99)80054-0
  22. Someville C (1995) Direct tests of the role of membrane lipidcomposition in low-temperature-induced photoinhibition and chilling sensitivity in plant and cyanobacteria. Proc Nat' l Acad Sci USA 84:739-743
  23. Sutten F, Ding X, Kenefick DG (1992) LEA gene HVA1 regulation by cold acclimation and deacclimation in two barley cultivars with varying freeze resistance. Plant Physiol 99:338-340 https://doi.org/10.1104/pp.99.1.338
  24. Takahashi R, Shimosaka E (1997) cDNA sequence analysis and expression of two cold-regulated genes in soybean. Plant Sci 123:93-104 https://doi.org/10.1016/S0168-9452(96)04568-2
  25. Tao D-L, O quist G, Wingsle G (1998) Active oxygen scavengers during cold acclimation of scots pine seedlings in relation to freezing tolerance. Cryobiology 37:38-45 https://doi.org/10.1006/cryo.1998.2096
  26. Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1-7 https://doi.org/10.1104/pp.118.1.1
  27. Vincze E, Reeves JM, Lamping E, Farnden KJ, Reynolds PH (1994) Repression of the L-asparaginase gene during nodule develop ment in Lupinus angustifolius. Plant Mol Biol 26:303-311 https://doi.org/10.1007/BF00039541
  28. Verwoerd TC, Dekker BM, Hoekema A (1989) A small-scale procedure for rapid isolation of plant RNAs. Nucl Acid Res 17:2362 https://doi.org/10.1093/nar/17.6.2362
  29. Wanner LA, Junttila (1999) Cold-induced freezing tolerance in Arabidopsis. Plant PhysioI 120:391-400 https://doi.org/10.1104/pp.120.2.391
  30. Xin Z, Browse UJ (1998) eskimol mutants of Arabidopsis are constitutively freezing-tolelant. Proc Nat'I Acad Sci USA 95:7799-7804 https://doi.org/10.1073/pnas.95.13.7799