cDNA Sequence and mRNA Expression of a Novel Serine Protease from the Firefly, Pyrocoelia rufa

  • Lee, Kwang-Sik (College of Natural Resources and Life Science, Dong-A University) ;
  • Kim, Seong-Ryul (College of Natural Resources and Life Science, Dong-A University) ;
  • Sohn, Hung-Dae (College of Natural Resources and Life Science, Dong-A University) ;
  • Jin, Byung-Rae (College of Natural Resources and Life Science, Dong-A University)
  • Published : 2002.09.01

Abstract

We describe here the cDNA sequence and mRNA expression of a novel serine pretense from the firefly, Pyrocoelia rufa. The 771 bp cDNA encodes for 257 amino acid residues. The deduced protein of P. rufa serine pretense gene contains the catalytic triad and six-conserved cysteine residues. Alignment of the deduced protein of P. rufa serine pretense gene showed 47.4% protein sequence identity to known coleopteran insect Rhyzopertha dominica midgut trpsin-like enzyme. Northern blot analysis revealed that the P. rufa serine pretense is specifically expressed in the midgut of P. rufa larvae.

Keywords

References

  1. Ashida, M. and P. T. Brey (1997) Recent advances in research on the insect prophenoloxidase cascade; in Molecular mech-anisms of immune responses in insects. Brey, P. T. and D. Hultmark (eds.), pp. 133-172, Chapman & Hall, London
  2. Borovsky, D. (1996) Culex pipiens quinquefasciatus late trypsin precursor. GenBank accession number U65412
  3. Borovsky, D., K. Butaye and B. Daems (2001) Cloning, sequencing and characterization of Culex pipiens quinque-fasciatus early trypsin pre-mRNA. GenBank accession num-ber AY029276
  4. Borovsky, D., I. Janssen, J. Vanden Broeck, R. Huybrechts, P. Verhaert, H. L. De Bondt, D. Bylemans and A. De Loof (1996) Molecular sequencing and modeling of Neobellieria bullata trypsin. Evidence for translational control by Neobel-lieria trypsin-modulating oostatic factor. Eur. J. Biochem. 237,279-287 https://doi.org/10.1111/j.1432-1033.1996.0279n.x
  5. Bown, D. P.,, H. S. Wilkinson and J. A. Gatehouse (1997) Dif-ferentially regulated inhibitor-sensitive and insensitive pro-tease genes from the phytophagous insect pest, Helicoverpa armigera, are members of complex multigene families. Insect Biochem. Mol. Biol. 27, 625-638 https://doi.org/10.1016/S0965-1748(97)00043-X
  6. Casu, R. E., J. M. Jarmey, C. M. Elvin and C. H. Eisemann (1994) Isolation of a trypsin-like serine protease gene family from the sheep blowfly Lucilia cuprina. Insect Mol. BioI. 3, 159-170 https://doi.org/10.1111/j.1365-2583.1994.tb00163.x
  7. Gaines, P. J., C. M. Sampson, K. E. Rushlow and G. L. Stiegler (1999) Cloning of a family of serine protease genes from the cat flea Ctenocephalides felis. Insect Mol. Biol. 81, 11-22
  8. Gao, L., S. Wang and D. A. Hickey (1997) Drosophila virilis Dvtry-l trypsin precusor (Dvtry-l) and Dvtry-2 trypsin pre cusor (Dvtry-2) genes. GenBank accession number U93213
  9. Gamier, J., D. J. Osguthorpe and B. Robson (1978) Analysis of the accuracy and implications of simple methods for predict-ing the secondary structure of globular proteins. J. Mol. BioI. 120, 97-120 https://doi.org/10.1016/0022-2836(78)90297-8
  10. Gorman, M. J., O. V. Andreeva and S. M. Paskewitz (2000) Sp22D: a multidomain serine protease with a putative role in insect immunity. Gene 251, 9-17 https://doi.org/10.1016/S0378-1119(00)00181-5
  11. Han, Y., C. Salazar, S. Reese-Stardy, A. Cornel, M. Gorman, F. Collins and S. Paskewitz (1997) Cloning and characteriza-tion of a serine protease from the human malaria vector, Anophetes gambiae. Insect Mol. BioI. 6, 385-395 https://doi.org/10.1046/j.1365-2583.1997.00193.x
  12. Imler, J. L. and J. A. Hoffmann (2000) Signaling mechanisms in the antimicrobial host defense of Drosophila. Curr. Opin. MicrobioI. 3, 16-22 https://doi.org/10.1016/S1369-5274(99)00045-4
  13. Iwanaga, S., S. Kawabata and T. Muta (1998) New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. J. Biochem. 123, 1-15 https://doi.org/10.1093/oxfordjournals.jbchem.a021894
  14. Jiang, H. and M. R. Kanost (2000) The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. BioI. 30,95-105 https://doi.org/10.1016/S0965-1748(99)00113-7
  15. Kalhok, S., L. M. Tabak, D. E. Prosser, A. E. R. Downe and B. N. White (1992) Trypsin-like proteinase 3A1 precursor-yellow fever mosquito. GenBank accession number TRWV3Y
  16. Kraut, J. (1977) Serine proteases: structure and mechanism of catalysis. Annu. Rev. Biochem. 46, 331-358 https://doi.org/10.1146/annurev.bi.46.070177.001555
  17. Kyte, J. and R. F. Doolittle (1982) A simple method for dis-playing hydropathic character of a protein. J. MoI. Biol. 157, 105-132 https://doi.org/10.1016/0022-2836(82)90515-0
  18. Lee, K. S., J. S. Bae, T. W. Goo, S. E. Kim, J. G. Kim, H. D. Sohn and B. R. Jin (2000) Analysis of expressed sequence tags of the firefly, Pyrocoelia rufa. Int. J. Indust. Entomol. 1, 165-169
  19. Lee, K. S., H. J. Park, J. S. Bae, T. W. Goo, I. Kim, H. D. Sohn and B. R. Jin (2001) Molecular cloning and expression of a cDNA encoding the luciferase from the firefly, Pyrocoelia rufa. J. Biotechnol. 92, 9-19 https://doi.org/10.1016/S0168-1656(01)00323-6
  20. Lehane, S. M., S. J. Assinder and M. J. Lehane (1998) Cloning, sequencing, temporal expression and tissue-specificity of two serine proteases from the midgut of the blood-feeding fly Stomoxys calcitrans. Eur. J. Biochem. 254, 290-296 https://doi.org/10.1046/j.1432-1327.1998.2540290.x
  21. McMaster, G. K. and G. G. Carmichael (1977) Analysis of sin-gle- and double-stranded nucleic acids on polyacryamide and agarose gels by using glyoxal and acridine orange. Proc. Natl. Acad. Sci. USA 74, 4835-4838 https://doi.org/10.1073/pnas.74.11.4835
  22. Moire, N., Y. Bigot, G. Periquet and C. Boulard (1994) Sequencing and gene expression of hypodermis A, B, C in larval stages of Hypodenna Iineatum. Mol. BioI. Parasitol. 66, 233-240 https://doi.org/10.1016/0166-6851(94)90150-3
  23. Muller, H. M., J. M. Crampton, A. della Torre, R. Sinden and A. Crisanti (1993) Temporal and spatial expression of serine protease genes in Anopheles gambiae. ParasiloIogia Suppl. 35, 73-76
  24. Muller, H. M., F. Cattemccia, J. Vizioli, A. della Torre and A. Crisanti (1995) constitute and blood meal-induced trypsin genes in AnopheIes gambiae. Exp. Parasitol. 81, 371-385 https://doi.org/10.1006/expr.1995.1128
  25. Paskewitz, S. M. and M. J. Gorman (1999) Mosquito immunity and malaria parasites. Am. Entomol. 45, 80-94 https://doi.org/10.1093/ae/45.2.80
  26. Peterson, A. M., C. V. Barillas-Mury and M. A. Wells (1994) Sequence of three cDNAs encoding an alkaline midgut trypsin from Manduca sexta. Insect Biochem. Mol. BioI. 24, 463-471 https://doi.org/10.1016/0965-1748(94)90041-8
  27. Swofford, D. L. (1990) PAUP: phylogenetic analysis using par-simony, ver. 3.0. Illinois Natural History Survey, Champaign (on disk)
  28. Wang, S., C. Magoulas and D. A. Hickey (1999) Concerted evolution within a trypsin gene cluster in Drosophila. MoI. BioI. Evol. 16, 1117-1124 https://doi.org/10.1093/oxfordjournals.molbev.a026202
  29. Wang, S., F. Young and D. A. Hickey (1995) Genomic organi-zation and expression of a trypsin gene from the spruce bud-worm, Choristoneura fumiferana. Insect Biochem. MoI. Biol. 25, 899-908 https://doi.org/10.1016/0965-1748(95)00022-N
  30. Yan, J., Q. Cheng, C. B. Li and S. Aksoy (2001) Molecular characterization of two serine proteases expressed in gut tis-sue of the African trypanosome vector, GIossina morsitans morsitans. Insect Mol. Biol. 10, 47-56 https://doi.org/10.1046/j.1365-2583.2001.00232.x
  31. Zhu, Y. C. and J. E. Baker (1999) Characterization of midgut trypsin-like enzymes and three trypsmogen cDNAs from the lesser grain borer, Rhyzopertha dominica (Coleoptera: Bos-trichidae). Insect Biochem. Mol. BioI. 29, 1053-1063 https://doi.org/10.1016/S0965-1748(99)00081-8
  32. Zhu, Y. C., B. Oppert, K. J. Kramer, W. H. McGaughey and A. K. Dowdy (2000) cDNA sequence, mRNA expression and genomic DNA of trypsinogen from the Indian meal moth, Plodia interpunctella. Insect Mol. Biol. 9, 19-26 https://doi.org/10.1046/j.1365-2583.2000.00138.x