Characteristic analysis of Modular Multipliers and Squarers for GF($2^m$)

유한 필드 GF($2^m$)상의 모듈러 곱셈기 및 제곱기 특성 분석

  • 한상덕 (대구대학교 컴퓨터정보공학과) ;
  • 김창훈 (대구대학교 컴퓨터정보공학과) ;
  • 홍춘표 (대구대학교 정보통신공학부)
  • Published : 2002.12.01

Abstract

This paper analyzes the characteristics of three multipliers and squarers in finite fields GF(2/sup m/) from the point of view of processing time and area complexity. First, we analyze structures of three multipliers and squarers: 1) Systolic array structure, 2), LFSR structure, and 3) CA structure. To make performance analysis, each multiplier and squarer was modeled in VHDL and was synthesized for FPGA implementation. The simulation results show that CA structure is the best from the point view of processing time, and LFSR structure is the best from the point of view of area complexity.

본 논문에서는 타원 곡선 암호화 시스템 등에 응용되는 유한 필드 GF(2$^{m}$ )상의 모듈러 곱셈기 및 제곱기에 대한 처리 시간과 공간 복잡도를 비교 분석하였다. 이를 위하여 기존에 제시된 모듈러 곱셈기 및 제곱기를 설계하였으며, 이들을 VHDL로 기술한 후 회로를 합성하였다. 합성된 회로에 대한 기능 및 timing 시뮬레이션 결과 모두 정확한 결과 값을 얻었다. 합성된 모듈러 곱셈기 및 제곱기를 FPGA로 구현한 결과 한 클럭당 처리 시간은 시스톨릭 구조가 가장 빠르지만 지연 시간을 고려한 전체 처리 시간은 CA 구조가 가장 빠르다는 결과를 얻었다. 또한 공간 복잡도를 특성에 있어서는 LFSR 구조가 가장 우수하다는 결과를 얻었다.

Keywords