Adsorption Characteristics of Lead on Kaolinite

카올리나이트의 납 흡착 특성

  • 장경수 (인하대학교 토목공학과) ;
  • 강병희 (인하대학교 토목공학과)
  • Published : 2002.12.01

Abstract

The laboratory adsorption batch tests were performed to investigate the adsorption characteristics of Pb on kaolinite. The characteristics such as adsorption equilibrium time, adsorption capacity, adsorption isotherm were studied, and also the effects of pH and the mixing ratio on the adsorption of Pb on kaolinite were investigated. Test results show that the adsorption equilibrium state was reached within 24 hours, and the adsorbed amount of Pb increased, but the adsorption efficiency over the initial concentration of 198 mg/l decreased, with increasing the initial concentration of Pb. And the adsorption constant, 1/n was obtained 0.9584 by Freundlich isotherm equation. Regardless of the initial concentration of Pb. the adsorbed amount of Pb as well as the adsorption efficiency were increased with increasing pH values and converged to a certain constant value above 8 of pH values. And also the adsorbed amount of Pb increased with the mixing ratio, but its efficiency increased with the mixing ratio up to 8 and then showed the decreasing tendency above that.

본 연구에서는 카올리나이트에 대한 납의 흡착 특성을 규명코자 실내에서 회분식 흡착시험을 수행하였다. 회분식 흡착시험에서는 흡착평형도달시간, 흡착능 및 흡착등온식을 연구하였고 pH와 혼합비에 따른 카올리나이트에 대한 납의 흡착특성에 미치는 영향을 분석하였다. 실험결과 카올리나이트에 대한 납의 흡착은 24시간 이내에 평형에 도달하였고 초기오염농도가 증가함에 따라 카올리나이트에 대한 납의 흡착량은 증가하나 초기농도 198mg/l 이상에서는 흡착율은 감소하였다 Freundlich 흡착등온식에 적용한 결과 흡착강도를 나타내는 계수 1/n은 0.9584이다. 그리고 pH 값이 증가함에 따라 초기오염농도에 관계없이 카올리나이트에 대한 납의 흡착량 및 흡착율은 증가되었으며 pH 8 이상에서는 일정한 값에 수렴하였다. 또한 혼합비가 증가함에 따라 흡착량은 증가하였다. 반면에 흡착율은 점점 증가하다가 일정 혼합비 8 이상에서는 감소하는 경향이 있음을 알 수 있었다.

Keywords

References

  1. Hiemenz, P.C., and Rajagopalan, R., Piinciples of Colloid and Surface Chemistry, Third Edition, Marcel Dekker, Inc., New York, pp. 425-433 (1997)
  2. Rump, H.H., and Krist, H., Laboratory Manual for Exami-nation of Water, Waste Water and soil, VCH, Veriagsgesell-schaft, p. 190 (1988)
  3. Ball, D.F. 'Loss on Ignition as an Estimate of Organic Mat-ter and Organic Carbon in Non Calcarious Soil', Journal of Soil Science, 15, PP. 84-92 (1964) https://doi.org/10.1111/j.1365-2389.1964.tb00247.x
  4. US EPA, Engineering Guidance for the Design, Constmction and Maintenance of Cover Systems for Hazardous Waste, United States Environmental Protection Agency, Washing-ton, D.C, EPA/600/2-87/039 (1987)
  5. APHA, AWWA, and WEF, Standard Methods for the Exam-ination of Water and Wastewater, 20th Edition, Washington, D.C. (1998)
  6. Thermo Jarrell Ash Corporation, AA Methods Manual for Flame Operation, Franklin, MA, pp. 9-79 (1993)
  7. Das, N.C., and Bandyopadhyay, M. 'Removal of Copper (II) Using Vermiculite', Water Environment Research, 64(7), PP 852-857 (1992) https://doi.org/10.2175/WER.64.7.2
  8. Cline, S.R., and Reed, B.E. 'Lead Removal from Soils via Bench Scale Soil Washing Technique', Joumal of Environ-mental Ensineering, 121(10), pp. 700-705 (1995)
  9. Brownawell, B.J., Chen, H., Collier, J.M., and Westall, J.C. 'Adsorption of Organic Cations to Natural Materials', Envi-ron. Sci. Technol., 24(8), pp. 1234-1241 (1990) https://doi.org/10.1021/es00078a011
  10. Weber, W.J., Physicochemical Processes for Water Quality Control, John Wiley, New York, pp. 204-273 (1992)
  11. Carter, M.C., Weber, W.J., and Olmstead, K.P. 'Effects of Background Dissolved Organic Matter on TCE Adsorption by GAC', J. AWWA, pp. 81-91 (1992)
  12. Mohamed, A.M.O., and Anda, H.E., Geoenvironmental Engi-neering, Developments in Geotechnical Engineering 82, Elsevier, Amsterdam, p. 520 (1998)
  13. Yong, R.N., and Phadungchewit, Y. 'pH Influence on Selec-tivity and Retention of Heavy Metals in Some clay soils', Can. Geotech. J., 30, pp. 821-833 (1993) https://doi.org/10.1139/t93-073
  14. Yong, R.N., Mohamed, A.M.O., and Warkentin, B.R, Prin-ciples of Contaminant Transport in Soils, Developments in Geotechnical Engineering 79, Elsevier, Amsterdam, p. 327 (1992)
  15. Fang, H.Y, Introduction to Environmental Geotechnology, CRC, New York, P. 164 (1997)