Simple Monodimensional Model for Linear Growth Rate of Photosynthetic Microorganisms in Flat-Plate Photobioreactors

  • Kim, Nag-Jong (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University) ;
  • Suh, In-Soo (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University) ;
  • Hur, Byung-Ki (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University) ;
  • Lee, Choul-Gyun (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
  • Published : 2002.12.01

Abstract

The current study proposes a simple monodimensional model to estimate the linear growth rate of photosynthetic microorganisms in flat-plate photobioreactors (FPPBRs) during batch cultivation. As a model microorganism, Chlorella kessleri was cultivated photoautotrophically in FPPBRs using light-emitting diodes (LEDs) as the light sources to provide unidirectional irradiation in the photobioreactors. Various conditions were simulated by adjusting both the intensity of the light and the height of the culture. The validity of the proposed model was examined by comparing the linear growth rates measured with the predicted ones obtained from the proposed model. Accordingly, the value of $\frac{K\cdot\mu m}{\alpha\cdot L}log(I_0\cdot{I_s}^{\varepsilon 1)\cdot {I_c}^{-\varepsilon})$ was proposed as an approximate index for strategies to obtain the maximal lightn yield under light-limiting conditions for high-density algal cultures and as a control parameter to improve the photosynthetic productivity and efficiency.

Keywords

References

  1. Biotechnol. Bioeng. v.55 A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture Acien Fernandez,F.G.;F.Garicia Camacho;J.A.Sanchez Perez;J.M.Fernandez Sevilla;E.Molina Grima https://doi.org/10.1002/(SICI)1097-0290(19970905)55:5<701::AID-BIT1>3.0.CO;2-F
  2. Microalgae: Biotechnology and Microbiology Becker,E.W.
  3. J. Biotechnol. v.70 Commercial production of microalgae: Ponds, tanks. tubes and fermenters Borowitzka,M.A. https://doi.org/10.1016/S0168-1656(99)00083-8
  4. Aquaculture v.151 Nutritional properties of microalgae for mariculture Brown,M.R.;S.W.Jeffrey;J.K.Volkman;G.A.Dunstan https://doi.org/10.1016/S0044-8486(96)01501-3
  5. Aquaculture v.195 An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae) Cheng-Wu,Z.;O.Zmora;R.Kopel;A.Richmond https://doi.org/10.1016/S0044-8486(00)00533-0
  6. Biotechnol. Bioeng. v.40 A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors: II. Identification of kinetic parameters under light and mineral limitations Cornet,J.F.;C.G.Dussap;P.Cluzel;G.Dubertret https://doi.org/10.1002/bit.260400710
  7. Biotechnol. Bioeng. v.40 A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors: I. Coupling between light transfer and growth kinetics Cornet,J.F.;C.G.Dussap;G.Dubertret https://doi.org/10.1002/bit.260400709
  8. Chem. Eng. Sci. v.50 A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors Cornet,J.F.;C.G.Dussap;J.B.Gros https://doi.org/10.1016/0009-2509(95)00022-W
  9. Micro-algal Biotechnology Genetic engineering of micro-algae Craig,R.;B.Y.Reichelt;J.L.Reichelt;M.A.Borowitzka(ed.);L.J.Borowitzka(eds.)
  10. Biochem. Biophys. Acta v.19 The flattening of the absorption spectrum of suspensions, as compared to that of solutions Duysens,L.N.M. https://doi.org/10.1016/0006-3002(56)90380-8
  11. Process Biochem. v.35 Effects of mechanical and gydrodynamic sterss in agitated, sparged cultures of Porphyridium cruentum. Garcia Camacho,F.;A.Contreras Gomez;T.Mazzuca Sobczuk;E.Molina Grima https://doi.org/10.1016/S0032-9592(00)00138-2
  12. Algal Photosynthesis Chapter 6: Light utilization and optical properties of algae Geider,R.J.;B.a.Osborne
  13. Algal Photosynthesis Cahpter 7: The photosynthesis-light response curve Geider,R.J.;B.A.Osborne
  14. General Photobiology (1st ed.) Hader,D.P.;M.Tevini
  15. Biotechnol. Bioeng. v.51 A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Hu,Q.;H.Guterman;A.Richmond https://doi.org/10.1002/(SICI)1097-0290(19960705)51:1<51::AID-BIT6>3.0.CO;2-#
  16. Appl. Microbiol. Biotechnol. v.49 Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor Hu,Q.;N.Kurano;M.Kawachi;I.Iwasaki
  17. Carbon dioxide utilization IEAGHG
  18. J. Biotechnol. v.78 Efficiency of light utilization of chlamydomonas reingardtil under mediumduration light:dark cycles Janssen,M.;M.Janssen;M.D.winter;J.tramper;L.R.Mur;J.Snel;R.H.wijffels https://doi.org/10.1016/S0168-1656(99)00233-3
  19. J. Microbiol. Biotechnol. v.11 Bioxorption model for binary adsorption sites Jeon,C.;J.Y.Park;Y.J.Yoo
  20. J. Microbiol. Biotechnol. v.11 Effect of ionic copper toxicity on the growth of green algs, Selenastrum capricornutum Kim,M.K.;R.E.H.Smith
  21. Biotechnol. Bioprocess Eng. v.6 A theoretical consideration on oxygen production rate in microalgal cultures Kim,N.J.;C.G.Lee https://doi.org/10.1007/BF02933005
  22. Biotechnol. Bioprocess Eng. v.4 Calculation of light penetration depth in photobioreactors Lee,C.G. https://doi.org/10.1007/BF02931920
  23. Biotechnol. Prog. v.12 Photoacclimation of chlorella vulgaris to red light from light-emitting diodes leads to autospore release following each cellular division Lee,C.G.;B.O.Palsson https://doi.org/10.1021/bp950084t
  24. Biotechonl. Bioeng. v.24 Kinetics and bioenergetics of light-limited photoautotrophic growth of Spirulina platensis Lee,H.Y.;L.E.Erickson;S.S.Yang
  25. J. Microbiol. Biotechnol. v.10 Effects of NO and SO₂on growth of highly-CO₂-tolerant microalgae Lee,J.H.;J.S.Lee;C.S.Shin;S.C.Park;S.W.Kim
  26. J. Microbiol. Biotechnol. v.11 CO₂fixation by Chlorella KR-1 using flue gas and its utilization as a feedstuff for chicks Lee,J.S.;D.K.Kim;J.P.Lee;S.C.Park;J.H.Koh;S.J.Ohh
  27. Biotechnol. Bioprocess Eng. v.6 Effect of light/dark cycles on wastewater treatments by microalgae Lee,K.Y.;C.G.Lee https://doi.org/10.1007/BF02932550
  28. Biotechonl. Bioeng. v.36 Kinetic analysis of the growth of chlorella vulgaris Lehana,M. https://doi.org/10.1002/bit.260360212
  29. The Biology of Cyanobacteria Interactions of cyanobacteria with light Liere,L.V.;A.E.Walsby;N.G.Carrand(ed.);B.A.Witton(eds.)
  30. J. Microbiol. Biotechnol. v.10 Impact of physiological stresses on nitric oxide formation by green alga, Scenedesmus obliquus Mallick,N.;F.H.Mohn;L.Rai;C.J.Soeder
  31. Algae Biomass; Production and Use Modeling of algal production systems Markl,H.;G.Shelef(ed.);C.J.Soeder(eds.)
  32. J. Biotechnol. v.70 Photobioreactors: Light regime, mass transfer, and scale up Molina Grima,E.;F.G.Acien Fernandez;F.Garicia Camacho;Y.Chisti https://doi.org/10.1016/S0168-1656(99)00078-4
  33. J. Chem. Tech. Biotechnol. v.61 A mathematical midel of microalgal growth in light-limited chemostat culture Molina Grima,E.;F.Garcia Camacho;J.A.Sanchez Perez;J.M.Fernandez Sevilla;F.G.Acien Fernandez;A.Contreras Gomez https://doi.org/10.1002/jctb.280610212
  34. Biotechonl. Bioeng. v.69 Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae Morita,M.;Y.Watanabe;H.Saiki https://doi.org/10.1002/1097-0290(20000920)69:6<693::AID-BIT14>3.0.CO;2-0
  35. J. Appl. Phycol. v.10 Reduced photoinhibition of a phycocyanin-deficient mutant of Synechocysitis PCC 6714 Nakajima,Y.;M.Tsuzuki;R.Ueda
  36. J. Appl. Phycol. v.12 Light requirement and photosynthetic cell cultivation - Development of processes for efficient light utilization in photobioreactors Ogbonna,J.C.;H.Tanaka https://doi.org/10.1023/A:1008194627239
  37. J. Ferment. Bioeng. v.80 Kinetic study on light-limited batch cultivation of photosynthetic cells Ogbonna,J.C.;H.Yada;H.Tanaka https://doi.org/10.1016/0922-338X(95)90826-L
  38. J. Ferment. Bioeng. v.80 Light supply coefficient: A new engineering parameter for photobioreactor design Ogbonna,J.C.;H.Yada;H.Tanaka https://doi.org/10.1016/0922-338X(95)94206-7
  39. J. Microbiol. Biotechnol. v.11 Astaxanthin production by Haematococcus pluvialis under various light intensities and wavelengths Park,E.K.;C.G.Lee
  40. J. Microbiol. Biotechnol. v.10 Effect of flashing light on oxygen production rates in high-density algal cultures Park,K.H.;D.I.Kim;C.G.Lee
  41. Biotechnol. Bioprocess Eng. v.5 Optimization and algal photobioreactors using flashing lights Park,K.H.;C.G.Lee https://doi.org/10.1007/BF02936592
  42. Algae Biomass; Production and Use Air-lift pumps and the effect of mixing on algal growth Persoone,G.;J.Morales;H.Verlet;N.Depauw;G.Shelef(ed.);C.J.Soeder(eds.)
  43. CRC Handbook of Biosolar Resources Light intensity preference and tolerance of aquatic photosynthetic microorganisms Philips,E.J.;A.Mitsui;O.R.Zaborsky(ed.);A.Mitsui(ed.);C.C.Black(eds.)
  44. Bioreactor System Design Photobioreactors Prokop,A.;L.E.Erickson;J.A.Asenjo(ed.);J.C.Merchuk(eds.)
  45. J. Microbiol. Biotechnol. v.10 Services of algae to the environment Rai,L.C.;H.D.Kumar;F.H.Mohn;C.J.Soeder
  46. Aquaculture v.170 The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture Renaud,S.M.;L.V.Thinh;D.L.Parry https://doi.org/10.1016/S0044-8486(98)00399-8
  47. Handbook of Microalgal Mass Culture Outdoor mass cultures of microalgae Richmond,A.;A.Richmond(ed.)
  48. J. Microbiol. Biotechnol. v.10 Effect of gelatin on the stability of heavy chain monoclonal antibody production from plant suspension cultures Ryland,J.R.;P.M.Linzmaier;J.M.Lee
  49. Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology Foreword Sasson,A.;A.Vonshak(ed.)
  50. A Biology of the Algae (3rd ed) Sze,P.
  51. J. Mar. Sys. v.21 Vertical mixing influence on the compensation depth Szeligiewicz,W. https://doi.org/10.1016/S0924-7963(99)00011-1
  52. Photosynth. Res. v.60 Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: A different perspective Tabita,F.R. https://doi.org/10.1023/A:1006211417981
  53. Biotechnol. Bioeng. v.57 Efficiency of sunlight utilization: Tubular versus flat photobioreactors Tredici,M.T.;G.C.Zittelli https://doi.org/10.1002/(SICI)1097-0290(19980120)57:2<187::AID-BIT7>3.0.CO;2-J
  54. Environmental Effects of Ozone Depletion: 1998, Assessment. UNEP
  55. Handbook of Microalgal Mass Culture Laboratory techniques for the cultivation of microalgae Vonshak,A.;A.Richmind(ed.)
  56. Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology Spirulina: growth, physiology and biochemistry Vonshak,A.;A.Vonshak(ed.)
  57. FEMS Microbiol. Lett. v.146 Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: A molecule for phylogenetic and enzymological investigation Watson,G.M.F.;F.R.Tabita https://doi.org/10.1111/j.1574-6968.1997.tb10165.x
  58. J. Biotechnol. v.70 Effect of light-path length in outdoor flat plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp. Zou,N.;A.richmond https://doi.org/10.1016/S0168-1656(99)00087-5