Construction of the Phosphate-Limitation Inducible Expression Vector Containing the phoA Promoter of Enterobacter aerogenes

Enterobacter aerogenes 의 phoA 유전자 Promoter를 이용한 인 제한환경에서 발현하는 벡터 구축

  • 장화형 (배재대학교 바이오의약연구센터(Bio-Med RRC)) ;
  • 고병훈 (배재대학교 자연과학대학 생물의약학과) ;
  • 박신영 (배재대학교 자연과학대학 생물의약학과) ;
  • 이성호 (배재대학교 자연과학대학 생물의약학과) ;
  • 김성진 (배재대학교 자연과학대학 생물의약학과) ;
  • 임유정 (배재대학교 자연과학대학 생물의약학과) ;
  • 한갑진 (배재대학교 자연과학대학 생물의약학과) ;
  • 김영호 (배재대학교 자연과학대학 생물의약학과) ;
  • 이영근 (한국원자력연구소 방사선응용부)
  • Published : 2002.12.01

Abstract

To induce recombinant protein under phosphate restricted conditions such as soil, we have constructed the expression vector (pEAAP) with phoA gene promoter of Enterobacter aerogenes. To construct the pEAAP, deletion of the T7 promoter and lac operator from pET-22b(+) by BglII-XhoI digestion and addition of the phoA gene promoter (containing the pho box) were performed. To test pEAAP as an expression vector controled by phosphate limitation, pEAPHY1 was constructed with the phytate gene (Bsa-phy1) of Bacillus subtillis var. amyloliquefaciens (KCTC 8913P). Under the phosphate-limitation condition, CK-PHY1 ( Escherichia coli JM109 was transformed with pEAPHY1) expressed the 41 kD Bsa-Phy1 . Also CK-PHY1 formed the clear zone in solid medium containing phytate as a sole phosphate source.

토양 등의 인 제한환경에서 특이적으로 발현하는 벡터를 구축하기 위해서 Enterobacter areogenes의 phoA 유전자의 promoter가 든 pEAAP를 구축하였다. pEAAP는 pET-22b(+)을 BglII와 XbaI으로 절단하여 T7 promoter와 lac operator를 제거하고pho box가 포함된 phoA promoter를 삽입하여 구축하였다. pEAAP가 인 제한 환경에서 특이적으로 발현되는지 조사하고자 Bacillus subtillis var. amyloliquefaciens (KCTC 8913P)의 Phytase유전자인 Bsa-phy1을 도입한 pEAPHY1을 구축하였다. CK-PHY1 (pEAPHY1을 도입한Escherichia coli JM109)는 인 제한 환경에서 41 kD)의 Bsa-Phy1을 발현하였다. 또한, CK-PHY1은 phytate를 유일한 인산원으로 첨가된 고체배지에서 phytate를 분해하여 투명대를 형성하였다.

Keywords

References

  1. 생화학 뉴스 v.20 세균에 있어서 phosphate regulon의 transcriptional activator, PhoB의 역할 김수기;이기성
  2. The role of phosphorus in agriculture Assessing organic phosphorus in soils Anderson, G.:F.E. Khasawneh(ed.);E.C. Sample(ed.);E.J. Kampath(ed.)
  3. Phosphate in microorganisms: cellular and molecular biology Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria Goldstein, A.H.;A. Torriani-Gorini(ed.);E. Yagil(ed.);S. Silver(ed.)
  4. Appl. Environ. Microbiol. v.64 Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis Kerovuo, J.;M. Lauraeus;P. Nurminen;N. Kalkkinen;J. Apajalahti
  5. J. Bacteriol. v.174 Evidence for two phosphonate degradative pathways in Enterobacter areogenes Lee, K.;W.W. Metcalf;B.L. Wanner
  6. J. Bacteriol. v.174 Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: Nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone Liu, T.S.;L.Y. Lee;C.T. Tai;C.H. Hung;Y.S. Chang;J.H. Wolfram;R. Rogers;A.H. Goldstein
  7. Soil biota, management in sustainable farming systems Soil microorganisms and phosphorus availability Richardson, A.E,;C.E. Pankhurst(ed.);B.M. Doube(ed.);V.V.S.R. Grupta(ed.);P.R. Grace(ed.)
  8. Int. J. Syst. Bacteriol. v.4 Heterogeneous patterns of acid phosphatases containing low-molecular-mass polipeptides in members of the family Enterobacteriaceae Thaller, M.C.;F. Berlutti;S. Schippa;P. Iori;C. Passariello;G.M. Rossolini
  9. J. Bacteriol. v.169 The phoBR operon in Escherichia coli K-12 Wanner, B.L.;B.D. Chang
  10. Protein Expression Purification v.24 High-level expression and secretion of recombinant mouse endostatin by Escherichia coli Xu, R.;P. Du;J. Fan;Q. Zhang;T. Li;R. Gan