결함 접지 구조를 이용하여 소형화한 증폭기의 개선된 전력 성능

Improved Power Performances of the Size-Reduced Amplifiers using Defected Ground Structure

  • 임종식 (서울대학교 전기컴퓨터공학부) ;
  • 정용채 (전북대학교 전자정보공학부) ;
  • 한재희 (서울대학교 전기컴퓨터공학부) ;
  • 이영택 (서울대학교 전기컴퓨터공학부) ;
  • 박준석 (순천향대학교 정보기술공학부) ;
  • 안달 (순천향대학교 정보기술공학부) ;
  • 남상욱 (서울대학교 전기컴퓨터공학부)
  • Lim, Jong-Sik (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Jeong, Yong-Chae (Division of Electronics and Information Engineering, Chonbuk National University) ;
  • Han, Jae-Hee (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Lee, Young-Taek (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Park, Jun-Seok (Division of Information Technology Engineering, Soonchunhyang University) ;
  • Ahn, Dal (Division of Information Technology Engineering, Soonchunhyang University) ;
  • Nam, Sang-Wook (School of Electrical Engineering and Computer Science, Seoul National University)
  • 발행 : 2002.09.01

초록

본 논문은 결함 접지 구조(defected ground structure, DGS)를 삽입하여 소형화한 증폭기의 개선된 전력 성능을 언급하고 있다. DGS에 의한 부가적인 등가성분에 의하여 전파 지연 특성과 전기적 길이 증가 현상이 나타나는데, 이 성질을 이용하면 DGS를 포함한 전송 선로의 전기적 길이를 원래와 같게 유지하기 위하여 물리적 길이를 줄일 수 있다. 물리적 길이를 줄이더라도 전기적 길이는 같으므로 표준 증폭기(original amplifier)의 정합과 성능이 그대로 유지된다. DGS를 삽입하여 길이를 줄인 전송 선로는 증폭기의 원하는 동작주파수에서는 손실이 거의 없지만 하모닉 주파수에서는 일정량의 손실이 있으므로, 소형화된 증폭기(size-reduced amplifier)가 표준 증폭기보다 근 우수한 하모닉 차단 특성을 근본적으로 내재하고 있다. 따라서 출력측에서 검출되는 하모닉 성분의 크기가 표준 증폭기보다는 더 작을 것으로 예측할 수 있다. 이를 확인하기 위하여 표준 증폭기와 DGS로 소형화한 증폭기의 전력 성능을 측정한 결과, 소형화한 증폭기의 2차 하모닉, IMD3 성분, ACPR이 각각 5 dB, 2-6 dB, 1-4 dB가 개선되었다.

This paper discusses the improved power performances of the size-reduced amplifier using defected ground structure (DGS). The slow-wave effect and enlarged electrical length occur due to the additional equivalent circuit elements of DGS. Using these properties, it is possible to reduce the length of transmission lines in order to keep the same original electrical lengths by inserting DGS on the ground plane. The matching and performances of the amplifier are preserved even after DGS patterns have been inserted. While there is no loss in the size-reduced transmission lines at the operating frequency, but there exists loss to some extent at harmonic frequencies. This leads to the more excellent inherent capability of harmonic rejection of the size-reduced amplifier. Therefore, it is expected tile harmonics of the size-reduced amplifier are smaller than those of the original amplifier. The measured second harmonic, third order intermodulation distortion (IMD3), and adjacent channel power ratio (ACPR) of the size-reduced amplifier are smaller than those of the original amplifier by 5 dB, 2~6 dB, and 1~4 dB, respectively, as expectation.

키워드

참고문헌

  1. IEEE Microwave Guide Wave Lett. v.8 no.1 Broad-Band Power Amplifier Using Dielectric Photonic Bandgap Structure V. Radisic;Y. Qian;T. Itoh https://doi.org/10.1109/75.650973
  2. IEEE Microwave Guide Wave Lett. v.8 no.2 Novel 2-D Photonic bandgap Structure for Microstrip Lines V. Radisic;Y. Qian;R. Coccioli;T. Itoh https://doi.org/10.1109/75.658644
  3. IEEE Microwave Guide Wave Lett. v.8 no.10 Photonic Bandgap Structures Used as Filters in Microstrip Circuits I. Rumsey;M. Piket-May;P. K. Kelly https://doi.org/10.1109/75.735413
  4. IEEE Microwave Guide Wave Lett. v.10 no.1 A Novel Photonic bandgap Structure for Low-Pass Filter of Wide Stop-band T. Kim;C. Seo
  5. IEEE Trans. Microwave Theory Tech. v.47 no.8 A Uniplanar Compact Photonic-Bandgap(UC-PBG) Structure and its Applications for Microwave Circuits F. R. Yang;K. P. Ma;Y. Qian;T. Itoh https://doi.org/10.1109/22.780402
  6. IEEE Microwave Guide Wave Lett. v.10 no.10 Novel 1-D Microstrip PBG Cells Q. Xue;K. M. Shum;C. H. Chan https://doi.org/10.1109/75.877226
  7. IEEE Trans. Microwave Theory Tech. v.49 no.3 Uniplanar One-Dimensional Photonic-Bandgap Structures and Resonators T. Y. Yun;K. Chang https://doi.org/10.1109/22.910561
  8. IEEE Microwave and Wireless Comp. Lett. v.11 no.6 A Novel Electro-magnetic Bandgap Structure for Finite-Width Conductor-Backed Coplanar Waveguides S.-G. Mao;M.-Y. Chen https://doi.org/10.1109/7260.928932
  9. IEEE Microwave Guide Wave Lett. v.10 A Novel 1-D Periodic Defected Ground Structure for Planar Circuits C. S. Kim;J. S. Park;D. Ahn;J. B. Lim https://doi.org/10.1109/75.846922
  10. IEEE Microwave and Wireless Component Lett. v.MWCL-11 no.4 A Power Amplifier with Efficiency Improved Using Defected Ground Structure J. S. Lim;H. S. Kim;J. S. Park;D. Ahn;S. Nam
  11. 2002년 춘계 마이크로파 및 전파 학술대회 논문집 v.25 no.1 DGS를 이용한 λ/4 고임피던스 바이어스 선로 증폭기 설계 정시균;서규재;이효아;정용채;김철동
  12. 한국전자파학회 논문지 v.13 no.5 결함된 접지 구조를 이용한 증폭기의 소형화 방법 임종식;박준석;김철수;이영택;안달;남상욱
  13. IEEE Microwave and Wireless Component Lett. v.MWCL-12 no.2 A Novel Phase Noise Reduction Technique in Oscillators Using Defected Ground Structure Y. T. Lee;J. S. Lim;J. S. Park;D. Ahn;S. Nam
  14. IEEE Trans. Microwave Theory Tech. v.49 no.1 A Design of the Low-Pass Filter Using the Novel Microstrip Defected Ground Structure D. Ahn;J.-S. Park;C.-S. Kim;J. Kim;Y. Qian;T. Itoh https://doi.org/10.1109/22.899965
  15. IEE Electronics Lett. v.36 no.21 Design of 10dB 90o branch line coupler using microstrip line with defected ground structure J. S. Lim;C. S. Kim;J. S. Park;D. Ahn;S. Nam https://doi.org/10.1049/el:20001238
  16. IEEE Microwave and Wireless Components Lett. v.11 no.3 A 4:1 Unequal Wilkinson Power Divider J. S. Lim;S. W. Lee;C. S. Kim;J. S. Park;D. Ahn;S. Nam https://doi.org/10.1109/7260.915624
  17. MICROWAVE TRANSISTOR AMPLIFIERS Analysis and Design G. Gonzalez
  18. 2000 IEEE MTT-S Digest Two-Tone IMD Asymmetry in Microwave Power Amplifiers N. B. Carvalho;J. C. Pedro
  19. IEEE Trans. Microwave Theory Tech. v.47 no.12 On the Use of Mulitone Techniques for Assessing RF Components' Intermodulation Distortion J. C. Pedro;N. B. Carvalho https://doi.org/10.1109/22.808986
  20. IEEE Trans. Microwave Theory Tech. v.49 no.5 Prediction of a CDMA Output Spectrum Based on Intermodulation Products of Two-Tone Test S. J. Yi;S. Nam;S. H. Oh;J. H. Han https://doi.org/10.1109/22.920152