Non-invasive Methods for Determination of Cellular Growth in Podophyllum hexandrum Suspension Cultures

  • Chattopadhyay, Saurabh (Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology) ;
  • Bisaria, V.S. (Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology) ;
  • Scheper, T. (Institut fuer Technische Chemie) ;
  • Srivastava, A.K. (Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology)
  • 발행 : 2002.12.01

초록

Culture conductivity and on-line NADH fluorescence were used to measure cellular growth in plant cell suspension cultures of Podophyllum hexandrum. An inverse correlation between dry cell weight and medium conductivity was observed during shake flask cultivation. A linear relationship between dry cell weight and culture NADH fluorescence was obtained during the exponential phase of batch cultivation In a bioreactor under the pH stat (pH 6) conditions. It was observed that conductivity measurement were suitable for biomass characterisation under highly dynamic uncontrolled shake flask cultivation conditions. However, if the acid/alkali feeding is done for pH control the conductivity measurement could not be applied. On the other hand the NADH fluorescence measurement allowed online-in situ biomass monitoring of rather heterogenous plant cell suspension cultures in bioreactor even under the most desirable pH stat conditions.

키워드

참고문헌

  1. Enzyme Microb. Technol. v.11 Plant cell reactors: A perspective Panda A. K.;S. Mishra;V. S. Bisaria;S. S. Bhojwani https://doi.org/10.1016/0141-0229(89)90132-4
  2. Biotechnol. Adv. v.18 Transgenic hairy roots: Recent trends and applications Giri A. and M. L. Narasu https://doi.org/10.1016/S0734-9750(99)00016-6
  3. Biotechnol. Bioeng. v.42 On-line monitoring of cell concentration of Perilla frutescens in a bioreator Zhong J. J.;K. Fujiyama;T. Seki;T. Yoshida https://doi.org/10.1002/bit.260420420
  4. Plant Cell. Rep. v.11 A non-invasive method for the routine-estimation of fresh weight of cells grown in batch suspension cultures Blom T. J. M.;W. Kreis;F. V. Iren;K. R. Libbenga
  5. Biotechnol. Prog. Biomass estimation in plant cell cultures: A neural net-work approach Albiol J.;C. Campmajo;C. Casas;M. Poch
  6. Biotechnol. Bioeng. v.35 Determination of growth rate for plant cell cultures: Comparative studies. Ryu D. D. Y.;S. O. Lee;R. J. Romani https://doi.org/10.1002/bit.260350312
  7. Process Biochem. v.36 Studies on osmolarity, conductivity and mass transfer for selection of a bioreactor for Tagetes patula L. hairy roots Suresh B.;T. Rajasekaran;S. R. Rao;K. S. M. S. Raghavarao;G. A. Ravishankar https://doi.org/10.1016/S0032-9592(01)00132-7
  8. Biochem. Biophys. Acta v.24 Fluorescence spectrometry of reduced phosphopyridine nucleotide in intact cells in the near ultraviolet and visible region Duysens L. N. M.;J. Amesz https://doi.org/10.1016/0006-3002(57)90141-5
  9. Appl. Microb. v.19 Fluorometric technique for monitoring changes in the level of reduced nicotinamide nucleotides in continuous cultures of microorganisms Harrison D. E. F.;B. Chance
  10. Chem. Eng. J. v.34 Monitoring of NADH-dependent culture fluorescence during the cultivation of Escherichia coli Scheper T.;A. Gebauer;K. Schugerl https://doi.org/10.1016/0300-9467(87)85009-8
  11. Appl. Microbiol. Biotechnol. v.34 On-line fluorescence measurements in assessing culture metabolic activities Srivastava A. K. and B. Volesky
  12. Biotechnol. Bioeng. v.38 NADH fluorescence in a carbon limited fermentation Srivastava A. K.;B. Volesky https://doi.org/10.1002/bit.260380211
  13. Process Biochem. v.36 Culture fluorescence dynamics in Xanthomonas campestris Sriram G.;G. K. Sureshkumar https://doi.org/10.1016/S0032-9592(01)00151-0
  14. J. Biotechnol. v.23 Use of NAD(P)H-fluorescence for monitoring the response of starved cells of Catharanthus roseus in suspension to metabolic perturbations. Asali E. C.;R. Muthurasan;A. E. Humphrey https://doi.org/10.1016/0168-1656(92)90101-E
  15. Biotechnol. Lett. v.23 Development of suspension culture of Podophyllum hexandrum for production of podophyllotoxin. Chattopadhyay S.;A. K. Srivastava;S. S. Bhojwani;V. S. Bisaria https://doi.org/10.1023/A:1013704116860
  16. Appl. Microbiol. Biotechnol. v.55 The production of cytotoxic lignans by plant cultures. Petersen M.;A. W. Alfermann https://doi.org/10.1007/s002530000510
  17. Physiol. Plant. v.15 A revised medium for rapid growth and bioassay with tobacco tissue cultures. Murashige T.;F. Skoog https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  18. Appl. Biochem. Biotechnol. Optimization of culture parameters for production of podophyllotoxin in suspension culture of Podophyllum hexandrum. Chattopadhyay S.;A. K. Srivastava;V. S. Bisaria
  19. Enzyme Microb. Technol. v.11 Online monitoring of cell growth in plant tissue cultures by conductometry. Taya M.;M. Hegglin;J. E. Prenosil;J. R. Bourne https://doi.org/10.1016/0141-0229(89)90077-X