Computing transient flows with high elasticity

  • Roger I. Tanner (School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney) ;
  • Xue, S-C (School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney)
  • Published : 2002.12.01

Abstract

Although much progress has been made in the computation of Eulerian steady flows with high viscoelasticity, less work has been done for the case of transient flows. Because of their importance in injection moulding, blow moulding and other forming processes, as well as their Intrinsic interest, we believe more attention should be focussed in this area. Hence in this paper we review progress in unsteady flow computations with high elasticity, and show some new results in this area.

Keywords

References

  1. J. Non-Newt. Fluid Mech. v.98 Aboubacar, M.;M. F. Webster https://doi.org/10.1016/S0377-0257(00)00196-8
  2. J. Non-Newt. Fluid Mech. v.93 Alves, M. A.;F. T. Pinho;P. J. Oliveira https://doi.org/10.1016/S0377-0257(00)00121-X
  3. J. Non-Newt. Fluid Mech. v.97 Alves, M. A.;F. T. Pinho;P. J. Oliveira https://doi.org/10.1016/S0377-0257(00)00198-1
  4. J. Non-Newt. Fluid Mech. v.102 Atalik, K.;R. Keunings https://doi.org/10.1016/S0377-0257(01)00184-7
  5. J. Non-Newt. Fluid Mech. v.51 Baaijens, F. P. T. https://doi.org/10.1016/0377-0257(94)85009-7
  6. J. Non-Newt. Fluid Mech. v.79 Baaijens, F. P. T. https://doi.org/10.1016/S0377-0257(98)00122-0
  7. J. Non-Newt. Fluid Mech. v.65 Baloch, A.;P. Townsend;M. F. Webster
  8. J. Rheol. v.38 Becker, L. E.;G. H. McKinley;H. K. Rasmussen;O. Hassager https://doi.org/10.1122/1.550519
  9. J. Non-Newt. Fluid Mech. v.22 Beris, A. N.;R. C. Armstrong;R. A. Brown
  10. J. Non-Newt. Fluid Mech. v.44 Beris, A. N.;M. Avgousti;A. Souvaliotis https://doi.org/10.1016/0377-0257(92)80051-X
  11. Int. J. Numer. Meth. Eng. v.7 Betlers, P.
  12. J. Non-Newt. Fluid Mech. v.54 Bodart, C.;M. J. Crochet https://doi.org/10.1016/0377-0257(94)80029-4
  13. J. Non-Newt. Fluid Mech. v.12 Bisgaard, J. V. https://doi.org/10.1016/0377-0257(83)85003-4
  14. J. Non-Newt. Fluid Mech. v.82 Bishko, G. B.;O. G. Harlen;T. C. B. McLeish;T. M. Nicholson https://doi.org/10.1016/S0377-0257(98)00165-7
  15. Comput. Meth. Appl. Mech. Engrg. v.32 Brooks, A. N.;T. J. R. Hughes https://doi.org/10.1016/0045-7825(82)90071-8
  16. The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods Butcher, J. C.
  17. J. Non-Newt. Fluid Mech. v.50 Carew, E. O. A.;P. Townsend;M. F. Webster https://doi.org/10.1016/0377-0257(93)80034-9
  18. J. Non-Newt. Fluid Mech. v.29 Choi, H. C.;J. H. Song;J. Y. Yoo https://doi.org/10.1016/0377-0257(88)85061-4
  19. J. Comput. Phys. v.2 Chorin, A. J. https://doi.org/10.1016/0021-9991(67)90037-X
  20. J. Non-Newt. Fluid Mech. v.42 Coates, P. J.;A. N. R. C. Armstrong;R. A. Brown https://doi.org/10.1016/0377-0257(92)80008-L
  21. Methods of Mathematical Physics v.2 Courant, R.
  22. Arch. Rat. Mech. Anal. v.1 Criminale, W. O. Jr.;J. L. Ericksen;G. L. Jr. Filbey https://doi.org/10.1007/BF00298018
  23. Numerical Simulation of non-Newtonian Flow Crochet, M. J.;A. R. Davies;K. Walters
  24. J. Non-Newt. Fluid Mech. v.7 Crochet, M. J.;R. Keunungs https://doi.org/10.1016/0377-0257(80)85006-3
  25. J. Non-Newt. Fluid Mech. v.10 Crochet, M. J.;R. Keunungs https://doi.org/10.1016/0377-0257(82)80008-6
  26. J. Non-Newt. Fluid Mech. v.45 Darwish, M. S.;J. R. Whiteman;M. J. Bevis https://doi.org/10.1016/0377-0257(92)80066-7
  27. J. Non-Newt. Fluid Mech. v.79 Dimitropoulos, C. D.;R. Sureshkumar;A. N. Beris https://doi.org/10.1016/S0377-0257(98)00115-3
  28. Int. J. Numer. Meth. Eng. v.20 Donea, J. https://doi.org/10.1002/nme.1620200108
  29. Comput. Meth. Appl. Mech. Engrg. v.141 Fan, Y. R. https://doi.org/10.1016/S0045-7825(96)01102-4
  30. J. Non-Newt. Fluid Mech. v.84 Fan, Y. R.;R. I. Tanner;N. Phan-Thien https://doi.org/10.1016/S0377-0257(98)00154-2
  31. Computational Methods for Fluid Dynamics (3rd., rev. ed.) Ferziger, J. H.;M. Peric
  32. The Method of Weighted Residuals and Variational Principles Finlayson, B. A.
  33. J. Non-Newt. Fluid Mech. v.32 Fortin, M.;A. Fortin https://doi.org/10.1016/0377-0257(89)85012-8
  34. J. Non-Newt. Fluid Mech. v.41 Fortin, M.;A. Fortin
  35. Int. J. Num. Meth. Fluids v.8 Gaskell, P. H.;A. K. C. Lau https://doi.org/10.1002/fld.1650080602
  36. Numerical Initial Value Problems in Ordinary Differential equations Gear, C. W.
  37. J. Non-Newt. Fluid. Mech. v.39 Gervang, B.;P. S. Larsen https://doi.org/10.1016/0377-0257(91)80016-D
  38. Ann. Rev. Fluid. Mech. v.24 Glowinski, R.;O. Pironneau https://doi.org/10.1146/annurev.fl.24.010192.001123
  39. Numerical Analysis of Spectral Methods: Theory and Applications Gottlieb, D.;S. A. Orszag
  40. J. Non-Newt. Fluid Mech. v.41 Guenette, R.;M. Fortin https://doi.org/10.1016/0377-0257(91)87034-U
  41. J. Non-Newt. Fluid. Mech. v.60 Harlen, O. G.;J. M. Rallison;P. Szabo https://doi.org/10.1016/0377-0257(95)01381-5
  42. Phys. Fluids. v.8 Harlow, F. H.;J. E. Welch https://doi.org/10.1063/1.1761077
  43. Phys. Fluids. v.8 Harlow, F. H.;J. E. Welch https://doi.org/10.1063/1.1761178
  44. J. Non-Newt. Fluid Mech. v.12 Hassager, O.;C. Bisgaard https://doi.org/10.1016/0377-0257(83)80035-4
  45. J. Non-Newt. Fluid Mech. v.37 Hu, H. H.;D. D. Joseph https://doi.org/10.1016/0377-0257(90)90012-Z
  46. J. Non-Newt. Fluid Mech. v.64 Huang, X.-F.;N. Phan-Thien;R. I. Tanner https://doi.org/10.1016/0377-0257(96)01429-2
  47. Fluid Mechanics of Viscoelasticity Huilgol, R.R.;N. Phan-Thien
  48. J. Comput. Phys. v.62 Issa, R. I. https://doi.org/10.1016/0021-9991(86)90099-9
  49. Comput Mech. v.13 Jin, H.;N. Phan-Thien;R. I. Tanner https://doi.org/10.1007/BF00374240
  50. J. Non-Newt. Fluid Mech. v.55 Kabanemi, K. K.;F. Bertrand;P. A. Tanguy;A. Ait-Kadi https://doi.org/10.1016/0377-0257(94)80074-X
  51. Comput. Fluids v.5 Kawahara, M.;N. Takeuchi https://doi.org/10.1016/0045-7930(77)90004-4
  52. J. Comput. Phys. v.62 Keunungs, R. https://doi.org/10.1016/0021-9991(86)90107-5
  53. Fundamentals of Computer Modeling of Polymer Processing Keunings, R.;Tucker, Ⅲ, C. L.(ed.)
  54. J. Non-Newt. Fluid Mech. v.29 King, R. C.;M. R. Apelian;R. C. Armstrong;R. A. Brown https://doi.org/10.1016/0377-0257(88)85054-7
  55. J. Fluid Mech. v.218 Larson, R. G.;E. S. G. Shaqfeh;S. J. Muller https://doi.org/10.1017/S0022112090001124
  56. Laminar Flow and Convective Transport Processes Leal, L. G.
  57. On a Finite Element Method for Solving the Neutron Transport Equation Lesaint, P.;P. A. Raviart
  58. J. Non-Newt. Fluid Mech. v.63 Luo, X.-L. https://doi.org/10.1016/0377-0257(95)01411-X
  59. J. Non-Newt. Fluid Mech. v.79 Luo, X.-L. https://doi.org/10.1016/S0377-0257(98)00063-9
  60. J. Non-Newt. Fluid Mech. v.31 Luo, X.-L.;R. I. Tanner https://doi.org/10.1016/0377-0257(89)80028-X
  61. J. Non-Newt. Fluid Mech. v.26 Marchal, J. M.;M. J. Crochet https://doi.org/10.1016/0377-0257(87)85048-6
  62. J. Non-Newt. Fluid Mech. v.67 McKinley, G. H.;P. Pakdel;A. Oztekin https://doi.org/10.1016/S0377-0257(96)01453-X
  63. J. Rheol. v.42 McLeish, T. C. B.;R. G. Larson https://doi.org/10.1122/1.550933
  64. J. Non-Newt. Fluid Mech. v.72 Mompean, G.;M. Deville https://doi.org/10.1016/S0377-0257(97)00033-5
  65. Comput. Mech. v.8 Na, Y.;J. Y. Yoo https://doi.org/10.1007/BF00370547
  66. J. Non-Newt. Fluid Mech. v.36 Northey, P. J.;R. C. Armstrong;R. A. Brown https://doi.org/10.1016/0377-0257(90)85006-K
  67. J. Non-Newt. Fluid. Mech. v.42 Northey, P. J.;R. C. Armstrong;R. A. Brown https://doi.org/10.1016/0377-0257(92)80007-K
  68. J. Non-Newt. Fluid Mech. v.101 Oliveira, P. J. https://doi.org/10.1016/S0377-0257(01)00146-X
  69. J. Non-Newt. Fluid Mech. v.88 Oliveira, P. J.;F. T. Pinho https://doi.org/10.1016/S0377-0257(99)00017-8
  70. J. Non-Newt. Fluid Mech. v.79 Oliveira, P. J.;F. T. Pinho;G. A. Pinto https://doi.org/10.1016/S0377-0257(98)00082-2
  71. J. Non-Newt. Fluid Mech. v.51 Olsson, F. https://doi.org/10.1016/0377-0257(94)85021-6
  72. Numerical Heat Transfer and Fluid Flow Patankar, S. V.
  73. Computational Methods for Fluid Flow Peyret, R.;T. D. Taylor
  74. J. Non-Newt. Fluid Mech. v.103 Petera, J. https://doi.org/10.1016/S0377-0257(01)00137-9
  75. J. Non-Newt. Fluid Mech. v.89 Peters, E. A. J. F.;M. A. Hulsen;B. H. A. A. van den Brule https://doi.org/10.1016/S0377-0257(99)00026-9
  76. J. Non-Newt. Fluid Mech. v.32 Phelan, F. R.;M. F. Malone;H. H. Winter https://doi.org/10.1016/0377-0257(89)85036-0
  77. J. Non-Newt. Fluid Mech. v.87 Phillips, T. N.;A. J. Williams https://doi.org/10.1016/S0377-0257(99)00065-8
  78. J. Non-Newt. Fluid Mech. v.31 Pilitsis, S.;A. N. Beris https://doi.org/10.1016/0377-0257(89)85001-3
  79. The Art of Scientific Computing Numerical Recipes in Fortran Press, W. H.;B. P. Flannery;S. A. Teukolsky;W. T. Vetterling
  80. J. Non-Newt. Fluid Mech. v.36 Rajagopalan, D.;R. C. Armstrong;R. A. Brown https://doi.org/10.1016/0377-0257(90)85008-M
  81. J. Non-Newt. Fluid Mech. v.84 Rasmussen, H. K. https://doi.org/10.1016/S0377-0257(98)00153-0
  82. Proc. $13^{th}$ Int. Congress on Rheology v.2 Rasmussen, H. K.
  83. Proc. $13^{th}$ Int. Congress on Rheology v.2 Rasmussen, H. K.;S. Gottsche;E. M. Kjaer
  84. J. Non-Newt. Fluid Mech. v.46 Rasmussen, H. K.;O. Hassager
  85. J. Non-Newt. Fluid Mech. v.56 Rasmussen, H. K.;O. Hassager https://doi.org/10.1016/0377-0257(94)01274-L
  86. J. Non-Newt. Fluid Mech. v.82 Rasmussen, H. K.;O. Hassager https://doi.org/10.1016/S0377-0257(98)00162-1
  87. Proc. $13^{th}$ Int. Congress on Rheology v.2 Rasmussen, H. K.;O. Hassager
  88. Zeit. Angew. Math. Mech. v.65 Renardy, M. https://doi.org/10.1002/zamm.19850650919
  89. J. Non-Newt. Fluid Mech. v.36 Renardy, M. https://doi.org/10.1016/0377-0257(90)85022-Q
  90. Verification and Validation in Computational Science and Engineering Roache, P. J.
  91. SIAM J. Sci. Statist. Comput. v.41 Saad, Y.;M. H. Schultz
  92. Mathematical Modelling and Numerical Analysis v.28 Saramito, P. https://doi.org/10.1051/m2an/1994280100011
  93. J. Non-Newt. Fluid Mech. v.60 Saramito, P. https://doi.org/10.1016/0377-0257(95)01380-2
  94. J. Non-Newt. Fluid Mech. v.52 Saramito, P.;M. Piau https://doi.org/10.1016/0377-0257(94)80055-3
  95. J. Non-Newt. Fluid Mech. v.56 Sasmal, G. P. https://doi.org/10.1016/0377-0257(94)01276-N
  96. J. Non-Newt. Fluid Mech. v.51 Sato, T.;S. M. Richardson https://doi.org/10.1016/0377-0257(94)85019-4
  97. Int. J. Numer. Meth. Fluids v.20 Sato, T.;S. M. Richardson
  98. J. Non-Newt. Fluid Mech. v.29 Serdakowski, J. A.;B. Caswell
  99. Theoret. Comput. Fluid Dynamics v.5 Singh, P.;L. G. Leal https://doi.org/10.1007/BF00311813
  100. J. Non-Newt. Fluid Mech. v.93 Somasi, M.;B. Khomami https://doi.org/10.1016/S0377-0257(00)00115-4
  101. Water Waves, The Mathematical Theory with Applications Stoker, J. J.
  102. J. Fluid Mech. v.429 Stokes, J. R.;L. J. W. Graham;N. J. Lawson;D. V. Boger https://doi.org/10.1017/S0022112000002901
  103. J. Non-Newt. Fluid Mech. v.65 Sun, J.;N. Phan-Thien;R. I. Tanner https://doi.org/10.1016/0377-0257(96)01448-6
  104. J. Non-Newt. Fluid Mech. v.82 Sureshkumar, R.;M. D. Smith;R. C. Armstrong;R. A. Brown https://doi.org/10.1016/S0377-0257(98)00129-3
  105. J. Non-Newt. Fluid Mech. v.52 Talwar, K. K.;H. K. Ganpule;B. Khomami https://doi.org/10.1016/0377-0257(94)85026-7
  106. J. Non-Newt. Fluid Mech. v.59 Talwar, K. K.;B. Khomami https://doi.org/10.1016/0377-0257(95)01360-8
  107. Engineering Rheology.$(2^{nd}ed.)$ Tanner, R. I.
  108. Rheology: An Historical Perspective Tanner, R. I.;K. Walters
  109. J. Non-Newt. Fluid Mech. v.62 Tome, M. F.;B. Duffy;S. McKee https://doi.org/10.1016/0377-0257(95)01391-1
  110. J. Non-Newt. Fluid Mech. v.62 Tsai, Chin-Chin;Ta-Jo, Liu https://doi.org/10.1016/0377-0257(95)01401-2
  111. SIAM J. Sci. Stat. Comput. v.7 Van Kan, J. https://doi.org/10.1137/0907059
  112. J. Non-Newt. Fluid Mech. v.51 Van Kemenade, V.;M. O. Deville https://doi.org/10.1016/0377-0257(94)85020-8
  113. Ph.D. Thesis, Technische Universiteit Eindhoven Computational Polymer Melt Rheology Verbeeten, W. M. H.
  114. J. Non-Newt. Fluid Mech. v.73 Warichet, V.;V. Legat https://doi.org/10.1016/S0377-0257(97)00057-8
  115. J. Non-Newt. Fluid Mech. v.79 Wapperom, M. F.;M. F. Webster https://doi.org/10.1016/S0377-0257(98)00124-4
  116. Comput. Meth. Appl. Mech. Engrg. v.180 Wapperom, M. F.;M. F. Webster https://doi.org/10.1016/S0045-7825(99)00170-X
  117. J. Non-Newt. Fluid Mech. v.95 Wapperom, P.;R. Keunings https://doi.org/10.1016/S0377-0257(00)00165-8
  118. J. Non-Newt. Fluid Mech. v.97 Wapperom, P.;R. Keunings https://doi.org/10.1016/S0377-0257(00)00223-8
  119. J. Non-Newt. Fluid Mech. v.91 Wapperom, P.;R. Keunings;V. Legat https://doi.org/10.1016/S0377-0257(99)00095-6
  120. Practical Time Stepping Schemes Wood, W. L.
  121. Ph.D. Thesis. The University of Sydney Three-dimensional finite volume numerical modelling and numerical simulations of viscoelastic flows Xue, S.-C.
  122. J. Non-Newt. Fluid Mech. v.59 Xue, S.-C.;N. Phan-Thien;R. I. Tanner https://doi.org/10.1016/0377-0257(95)01365-3
  123. J. Non-Newt. Fluid Mech. v.74 Xue, S.-C.;N. Phan-Thien;R. I. Tanner https://doi.org/10.1016/S0377-0257(97)00072-4
  124. Rheol. Acta v.37 Xue, S.-C.;N. Phan-Thien;R. I. Tanner https://doi.org/10.1007/s003970050102
  125. J. Non-Newt. Fluid Mech. v.87 Xue, S.-C.;N. Phan-Thien;R. I. Tanner
  126. J. Non-Newt. Fluid Mech. Xue, S.-C.;N. Phan-Thien;R. I. Tanner
  127. Comput. Methods Appl. Mech. Engrg. v.180 Xue, S.-C.;R. I. Tanner;N. Phan-Thein https://doi.org/10.1016/S0045-7825(99)00171-1
  128. XIIth Inter. Workshop Numer: Meth. Non-Newt. Flows Xue, S.-C.;R. I. Tanner;N. Phan-Thein
  129. J. Non-Newt. Fluid Mech. Xue, S.-C.;R. I. Tanner;N. Phan-Thein
  130. J. Non-Newt. Fluid Mech. v.89 Yamaguchi, H.;A. Mishima;T. Yasumoto;T. Ishikawa https://doi.org/10.1016/S0377-0257(99)00049-X
  131. J. Non-Newt. Fluid Mech. v.39 Yoo, J. Y.;Y. Na https://doi.org/10.1016/0377-0257(91)80005-5
  132. J. Non-Newt. Fluid Mech. v.42 Fortin, A.;A. Zine https://doi.org/10.1016/0377-0257(92)80001-E
  133. J. Non-Newt. Fluid Mech. v.2 Perera, M. G. N.;K. Walters https://doi.org/10.1016/0377-0257(77)80032-3