Mercurous bromide $(Hg_2Br_2)$ crystal growth by physical vapor transport and characterization

  • Kim, S.K. (Department of Chemical Engineering, Hannam University) ;
  • S.Y. Son (Department of Chemical Engineering, Hannam University) ;
  • K.S. Song (Catalytic Combustion Research Center, Korea Institute of Energy Research) ;
  • Park, J.G. (Department of Chemical Engineering, Hannam University) ;
  • Kim, G.T. (Catalytic Combustion Research Center, Korea Institute of Energy Research)
  • Published : 2002.12.01

Abstract

Mercurous bromide ($Hg_{2}0Br_{2}$) crystals hold promise for many acousto-optic and opto-electronic applications. This material is prepared in closed ampoules by the physical vapor transport (PVT) growth method. Due to the temperature gradient between the source and the growing crystal region, the buoyancy-driven convection may occur. The effects of thermal convection on the crystal growth rate was investigated in this study in a horizontal configuration for conditions ranging from typical laboratory conditions to conditions achievable only in a low gravity environment. The results showed that the growth rate increases linearly with Grashof number, and for 0.2 $\leq$ Ar (transport length-to-height, L/H)$\leq$1.0 sharply for Ar=5 and $\Delta$T=30 K. We have also shown that the magnitude of convection decreases with the Ar. For gravity levels of less than $10^{-2}$g the non-uniformity of interfacial distribution is negligible.

Keywords

References

  1. J. Crystal Growth v.137 Growth and Characterization of Mercurous Halide Crystals:mercurous Bromide System N.B. Singh(et al) https://doi.org/10.1016/0022-0248(94)91265-3
  2. Monatsh. Chem v.101 Dworsky;K. Komarek https://doi.org/10.1007/BF00908538
  3. Physico-Chemical Hydro-dynamics v.1 Fluid Dynamics in Crystal Growth from Vapors F. Rosenberger
  4. J. Crystal Growth v.89 Mercurous Bromide Acousto-optic Devices N.B. Singh(et al)
  5. J. Crystal Growth v.51 Numerical Modeling of Diffusive-convective Physical Vapor Transport in Cylindrical Vertical Ampoules B.L. Markham;D.W. Greenwell;F. Rosenberger https://doi.org/10.1016/0022-0248(81)90419-X
  6. J. Chemical Vapor Deposition v.2 Convection in the Physical Vapor Transport Process-- I: Thermal Walter M.B. Duval
  7. The Proceeding of the ASME--WAM Winter Annual meeting, Fluid mechanics phenomena in microgravity : AMD-174, FED-175 Transition to Chaos in the Physical Transport Process--I Walter M.B. Duval
  8. J. Crystal Growth v.118 Effects of Buoyancy-driven Flow and Thermal Boundary Conditions on Physical Vapor Transport A. Nadarajah;F. Rosenberger;J. Alexander https://doi.org/10.1016/0022-0248(92)90048-N
  9. J. Crystal Growth v.167 Physical Vapor Transport of Zine-telluride by Dissociative Sublimation H. Zhou;A. Zebib;S. Trivedi;W.M.B. Duval https://doi.org/10.1016/0022-0248(96)00305-3
  10. J. Crystal Growth v.171 Physical Vapor Transport Revised F. Rosenberger;J. Ouazzani;I. Viohl;N. Buchan https://doi.org/10.1016/S0022-0248(96)00717-8
  11. PhysicoChemical Hydrodynamics v.11 no.1 Evaluation of Transport Conditions During PVT: Mercurous Chloride System N.B. Singh;R. Mazelsky;M.E. Glicksman
  12. J. Crystal Growth v.65 Interfacial Transport in Crystal Growth, a Parameter Comparison of Convective Effects F. Rosenberger;G. Muller https://doi.org/10.1016/0022-0248(83)90043-X
  13. J. Thermophys. Heat Transfer v.4 Interaction of Surface Radiation with Convection in Crystal Growth by Physical Vapor Transport M. Kassemi;Walter M.B. Duval
  14. Transport Phenomena R.B. Bird;W.E. Stewart;E.N. Lightfoot
  15. Proceeding of the $2^{nd}$ Intl symposium on univalent mercury halides Chemical Aspects of $Hg_2X_2$-Decomposition, Barogram-diagram and Thermodynamic Data H. Oppermann
  16. Numerical Heat Transfer and Fluid Flow S.V. Patankar
  17. Prog. Crystal Growth and Charact. v.27 Physical Vapor Transport Growth of Mercurous Chloride Crystals N.B. Singh;M. Gottlieb;R.H. Hopkins;R. Mazelsky;W.M.B. Duval;M.E.Glicksman https://doi.org/10.1016/0960-8974(93)90024-X
  18. NASA TM 105371 Thermal-solutal Convection with Conduction Effects Inside a Rectangular Enclosure Christopher Mennetrier;Walter M.B. Duval
  19. J. Heat Transfer v.89 Effects of Side Walls on Natural Convection Between Horizontal Plates Heated from Below I. Catton;D.K. Edwards https://doi.org/10.1115/1.3614388
  20. J. Heat Transfer v.91 Suppression of Cellular Convection by Lateral Walls D.K. Edwards
  21. J. Heat Transfer v.94 Effect of Wall Conducting on the Stability of a Fluid in a Rectangular Region Heated from Below I. Catton https://doi.org/10.1115/1.3449966
  22. J. Crystal Growth v.106 Purification and Characterization of Mercurous Halides N.B. Singh;G. Marshall;M. Gottlied;G.B. Brandt;R.H. Hopkins;R. Mazelsky;Walter M. B. Duval;M.E. Glicksman https://doi.org/10.1016/0022-0248(90)90287-U
  23. J. Crystal Growth v.46 The Growth of CdS in Sealed Silica Capsules G.J. Russell;J. Woods https://doi.org/10.1016/0022-0248(79)90080-0
  24. J. Crystal Growth v.47 Growth of Single Crystals of Zinc Selenide from the Vapor Phase J.R. Cutter;J. Woods https://doi.org/10.1016/0022-0248(79)90206-9
  25. J. Crystal Growth v.74 Vapor Transport Rate of $HgI_2$ in the Presence of Inert Gas K. Conder;J. Przyluski;J. Laskowski https://doi.org/10.1016/0022-0248(86)90133-8
  26. NASA TM 105920 Physical Vapor Transport of Mercurous Chloride Under a Nonlinear Thermal Profile Christophe Mennetrier;Walter M.B. Duval