References
- 「응용통계연구」 v.11 no.2 반복측정자료 분석에 대한 고찰: 신장이식 환자의 신기능 부전 연구를 중심으로 박태성;이승연;성건형;강종명;강경원
- Analysis of Longitudinal Data Diggle, P.J.;Liang, K.;Zeger, S.L.
- Applied Statistics v.43 Informative dropout in longitudinal data analysis (with Discussion) Diggle, P.J.;Kenward, M.G. https://doi.org/10.2307/2986113
- Statistical Science v.8 Regression Models foe Discrete Longitudinal Responses (with Discussion) Fitzmaurice, G.M.;Laird, N.M.;Rotnitsky, A.G. https://doi.org/10.1214/ss/1177010899
- Journal of the Royal Statistical Society, Series B v.57 Regression Models for Longitudinal Binary Responses with Informative Drop-outs Fitzmaurice, G.M.;Molenberghs, G.;Lipsitz, S.R.
- Biometrics v.38 Random-effects models for longitudinal data Laird, N.M.;Ware, J.H. https://doi.org/10.2307/2529876
- Biometrika v.73 Longitudinal data analysis using generalized linear models Liang, K.-Y.;Zeger, S.L. https://doi.org/10.1093/biomet/73.1.13
- Journal of the American Statistical Association v.92 The generalized estimating equation approach when data are not missing completely at random Paik, M.C. https://doi.org/10.2307/2965402
- Journal of the American Statistical Association v.90 Analysis of semiparametric regression models for repeated outcomes in the presence of missing data Robins, J.M.;Rotnitzky, A.;Zhao, L.P. https://doi.org/10.2307/2291134
- Biometrika v.63 Inference and missing data Rubin, D.B. https://doi.org/10.1093/biomet/63.3.581
- Linear Mixed Models for Longitudinal Data Verbeke, G.;Molenberghs, G.