Photosynthesis and Formation of UV-absorbing Substances in Antarctic Macroalgae Under Different Levels of UV-B Radiation

중파자외선에 대한 남극산 해조류의 광합성 및 자외선 흡수물질 형성 반응

  • Published : 2002.09.01

Abstract

Effects of artificial and solar W-B radiation on five rhodophytes (Curdiea racovitzae, Gigaytina skottsbergii, Mazzaella obovata, Myriogramme manginii, Palmaria decipiens) from Antarctica have been investigated using PAM fluorescence in laboratory and in the field. Laboratory studies showed that there were significant differences in the UV sensitivity between different species, and that the differences appeared to be correlated with the depth of collection of the specimens. It was apparent from the observations that the samples such as M. manginii and P. decipiens collected from 20-30 m depths were move sensitive to W-B radiation compared with those collected from shallower depths, The present study confirmed that an acclimation to the surrounding light regime could be an important factor to determine the UV-sensitivity of a species or individuals and that PAM measurements are rapid and non-destructive methods to evaluate UV influences. From field studies on M. manginii and P. decipiens it was observed that both plants exhibited changes in the effective quantum yield, with the minimum values nt noon followed by n recovery in the evening. Photoinhibition occurred in these species could therefore be accounted for by so- called dynamic photoinhibition. It seems likely that this protective mechanism may contribute to survival of the species in shallow water where they may encounter intense solar radiation. The presence or absence of the W- B component under solar radiation differently affected the photosynthetic recovery process, and the rate of recovery was much stoney in UV- present than in W- absent conditions. Functional role of W- B appears to delay the recovery of photosynthesis in the studied macroalgae. Differential sensitivity to UV-B recognised between M. manginii and P. decipiens seemed to correspond well with the amount of UV-absorbing substances (UVAS) contained in the respective species. Higher tolerance to solar radiation by the latter species may be due to the higher amount of UVAS. There were variations of UVAS concentrations in algal thalli depending on the season and depth of collection.

남극에 생육하는 5종의 홍조류(Curdiea racouitzae, Gigartina skottsbergii, Mazzaella obovata, Myriogramme manginii, Palmaria decipiens)를 대상으로 인공 중파 자외선과 태양광선에 대한 종별 생리적 반응을 광합성이라는 파라미터를 사용하여 조사 연구하였다. 실험실연구 결과, 종간에 중파 자외선에 대한 내성 차이가 확인되었으며 이러한 차이는 각 종들이 채집되기 전에 서식하고 있었던 수심과 매우 밀접한 관계가 있어서 20-30m의 수심에서 채집된 M. manginii와 P. decipiens의 자외선 내성이 다른 종들에 비하여 작게 나왔다. 본 연구 결과는 서식지 주변의 광환경이 해조류의 자외선 내성을 결정해 주는 한 요인이라는 가설을 입증해주었을 뿐 아니라 형광 변화를 이용한 광합성 측정법은 자외선 내성을 타진하는데 있어서 매우 신속하고 비파괴적인 방법으로 이용될 수 있음을 입증하였다. 두 종의 흥조류(M. manginii, P. decipiens)를 대상으로 태양광선 하에서의 광합성 효율을 관찰한 결과, 정오에 최저 광합성을 보인 반면 저녁에는 광합성 능력이 회복되는 현상을 나타내었다. 이같은 동적인 광저해 현상(dynamic photoinhibition)은 일종의 광적응 능력으로서 식물이 비교적 강한 태양광선에 노출된 지역에 성공적으로 서식하는데 크게 기여하는 것으로 사료된다. 본 연구에서는 또한 태양광선내 중파자외선 포함 유무에 따라 광합성 회복 속도에 차이가 나는 것을 볼 수 있었는데 중파자외선이 포함된 태양 광선 하에서는 광합성의 회복이 느린 반면, 중파 자외선이 제거된 조건에서는 광합성이 비교적 빨리 회복되는 것을 관찰할 수 있었고 이는 중파 자외선이 광합성 회복 기작을 지연시키는 작용을 한 것으로 해석될 수 있다. 야외에서 자외선 민감성을 비교한 결과, P. decipiens가 M. manginii에 비하여 자외선 내성이 큰 것으로 나타났는데, 두 종 공히 조간대로부터 조하대 상부까지 서식하는 종임에도 불구하고 이러한 내성차이를 보인 이유는 자외선 흡수물질의 정량적인 차이에 기인한다고 할 수 있다. M. manginii와 P decipiens에서 발견된 자외선 흡수물질의 양은 약 1:2 정도의 비율을 보였는데 이러한 정량적 차이가 자외선 민감성에 기여한 것으로 사료된다. 본 연구에서는 또한 계절별 그리고 채집 수심별로 자외선 흡수물질의 정량적 차이를 발견할 수 있었는데 태양광선이 풍부한 여름철에 그리고 고광량이 도달되는 수심 얕은 곳에 서식하는 개체가 더욱 많은 양의 자외선 흡수물질을 함유한 것으로 나타났다.

Keywords

References

  1. Science v.251 Free radicals within the Antarctic vortex: the role of CFCs in Antarctic ozone loss Anderson JG;DW Toohey;WH Brune https://doi.org/10.1126/science.251.4989.39
  2. J. Photochem. Photobiol. B. Biol. v.15 Photodamage to photosystem II-primary and secondary events Andersson B;AH Salter;I Virgin;I Vass;S Styring https://doi.org/10.1016/1011-1344(92)87003-R
  3. J. Exp. Mar. Biol. Ecol. v.194 Effects of ultraviolet (UV) radiation on microalgae-invertebrate symbiosis I. Response of the algal symbionts in culture and in hospite Banaszak AT;RK Trench https://doi.org/10.1016/0022-0981(95)00073-9
  4. J. Mar. Biol. Ass. v.31 Ecological and non-environmental constitutional resistence of the protoplasm of marine algae Biebl R. https://doi.org/10.1017/S0025315400053017
  5. Mar. Biol. v.131 UV-radiation can affect depth-zonation of Antarctic macroalgae Bischof K;D Hanelt;C Wiencke https://doi.org/10.1007/s002270050351
  6. Photochem. Photobiol. v.58 In vivo analysis of slow chlorophyll flurophyll fluorescence induction kinetics in algae: progress, problems and perspectives Buchel C;C Wihelm https://doi.org/10.1111/j.1751-1097.1993.tb04915.x
  7. Mar. Biol. v.130 Mycosporine-like amino acids: possible protection in eggs of the sea hare Aplysia dactylomela Carefoot TH;M Harris;BE Taylor;D Donovan;D Karentz https://doi.org/10.1007/s002270050259
  8. Antarctica. Kor. J. Phycol. v.9 Macroalgal vegetation of Maxwell Bay in King George Island Chung H;YS Oh;IK Lee;DS Kim
  9. Antarctica. Phycologia v.31 A year-round ecophysiological study of Himanthothallus grandifolius (Desmarestials, Phaeophyta) at Signy Island Drew EA;RM Hastings https://doi.org/10.2216/i0031-8884-31-3-4-262.1
  10. J. Exp. Mar. Biol. Ecol. v.104 Bathymetric adaptations of the reef-building corals at Davies Reef, Great Barrier Reef, Australia. III. UV-B absorbing compounds Dunlap WC;BE Chalker;JK Oliver https://doi.org/10.1016/0022-0981(86)90108-5
  11. Antact. J. U.S. v.30 UV-absorbing compounds in natural assemblages of Antarctic phytoplankton Dunlap WC;GA Rae;EW Helbling;VE Villafane;O Holm Hansen
  12. Phytochemistry v.26 Biosynthesis of mycosporine: mycosporine glutaminol in Trichothecium roseum Favre Bonvin J;J Bernillon;N Salin;N Arpin https://doi.org/10.1016/S0031-9422(00)83866-2
  13. Eur. J. Phycol. v.32 The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology Franklin LA;R Forster
  14. Science v.241 Ultraviolet radiation levels during the Antarctic spring Frederick JE;HE Snell https://doi.org/10.1126/science.241.4864.438
  15. In Progress in Phycological Research v.9 Risks of enhanced solar ultraviolet radiation for aquatic ecosystems Hader DP;Round FE (ed.);DJ Chapman (ed.)
  16. Bot. Acta. v.109 Photosynthetic fluorescence induction and oxygen production in corallinacean algae measured on site Hader DP;H Hermann;J Schafer;R Santas https://doi.org/10.1111/j.1438-8677.1996.tb00575.x
  17. Ocean Polar Res. v.23 Effects of artificial UV-B and solar radiation on four species of Antarctic rhodophytes Han T;S J Park;M Lee;Y S Han;S H Kang;S Lee
  18. Scientia Mar. v.60 Photoinhibition of photosynthesis in marine macroalgae Hanelt D
  19. Mar. Biol. v.131 Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution Hanelt D https://doi.org/10.1007/s002270050329
  20. Bot. Acta. v.105 Photoinhibition of photosynthesis and its recovery in red algae Hanelt D;K Hupperts;W Nultsch https://doi.org/10.1111/j.1438-8677.1992.tb00299.x
  21. Mar. Ecol. Prog. Ser. v.149 Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution Hanelt D;B Melchersmann;C Wiencke;W Nultsch https://doi.org/10.3354/meps149255
  22. Bull. Mar. Sci. v.32 Solar ultraviolet photobiology of the reef coral Pocillopora damiticornis and symbiotic zooxanthellae Jokiel PL;RH York
  23. Phycologia v.26 Seasonal growth and photoinhibition in Plocamium cartigineum (Rhodophyta) off the Isle of Man Kain JM https://doi.org/10.2216/i0031-8884-26-1-88.1
  24. Antarctic J. U.S. v.24 Report on studies related to the ecological implications of ozone depletion on the Antarctic environment Karentz D
  25. Antarctic Research Series v.62 Ultraviolet tolerance mechanisms in Antarctic marine organisms. In Ultraviolet radiation in Antarctica: measurements and biological effects Karentz D.;Weiler CS (ed.);PA Penhale (ed.) https://doi.org/10.1029/AR062p0093
  26. Limnol. Oceanogr. v.35 Evaluation of biologically harmful ultraviolet radiation in Antarctica with a biological dosimeter designed for aquatic environments Karentz D;LH Lutze https://doi.org/10.4319/lo.1990.35.3.0549
  27. Mar. Biol. v.108 Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure Karentz D;FS McEuen;MC Land;WC Dunlap https://doi.org/10.1007/BF01313484
  28. Bot. Mar. v.41 An inventory of UV absorbing mycosporine like amino acids in macroal gae from polar to warm temperate regions Karsten U;T Sawall;D Hanelt;K Bischof;FL Figueroa;A Flores Moya;C Wiencke https://doi.org/10.1515/botm.1998.41.1-6.443
  29. Ann. Rev. Pl. Physiol. Pl. Mol. Biol. v.42 Chlorophyll fluorescence and photosynthesis: the basics Krause GH;E Weis https://doi.org/10.1146/annurev.pp.42.060191.001525
  30. Photosynthesis Res. v.36 The effect of UV-B radiation on photosynthetic and respiration of phytoplankton, benthic macroalgae and seagrasses Larkum AWD;WF Wood https://doi.org/10.1007/BF00018071
  31. Mar. Biol. v.109 UV-B protecting compounds in the marine alga Phaeocystis pouchetii from Antarctica Marchant HJ;AT Davidson;GJ Kelly https://doi.org/10.1007/BF01313504
  32. Plant Cell Environ. v.18 Evaluation of the role of damage to photosystem II in the inhibition of CO$_2$ asimilation in pea leaves on exposure to UV-B radiation Nogues S;NR Baker https://doi.org/10.1111/j.1365-3040.1995.tb00581.x
  33. Mar. Biol. v.80 Responses of Ecklonia radiata (Laminariales) to light at 15℃ with reference to the field light budget at Goat Island Bay Novaczek I https://doi.org/10.1007/BF00392821
  34. In Photoinhibition of photosynthesis, from the molecular mechanisms to the field What is photoinhibition? Some insights from comparisons of shade and sun plants Osmond CB;Baker NR (ed.);NR Bowyer (ed.)
  35. Aqua. Bot. v.45 UV-absorbing pigment, photosynthesis and UV exposure in Antarctica: comparison of terrestrial and marine algae Post A;AWD Larkum https://doi.org/10.1016/0304-3770(93)90023-P
  36. Mar. Biol. v.122 Depth dependent responses to solar ultraviolet radiation and oxidative stress in the zooxanthellate coral Acropora microphtalma Shick JM;MP Lesser;WC Dunlap;WR Stochaj;BE Chalker;Wu Won J https://doi.org/10.1007/BF00349276
  37. Bot. Mar. v.17 Distribution of a 334 UV-absorbing-substance in algae, with special regard of its possible physiological roles Sivalingam PM;T Ikawa;Y Yokohama;K Nisizawa https://doi.org/10.1515/botm.1974.17.1.23
  38. Photochem. Photobiol. v.29 Penetration of UVB and biologically effective dose-rates in natural waters Smith R;K Baker https://doi.org/10.1111/j.1751-1097.1979.tb07054.x
  39. Polar Biol. v.10 Seasonality of brown algae from Antarctica along term culture study under fluctuating Antarctic daylengths Wiencke C https://doi.org/10.1007/BF00239370
  40. Mar. Ecol. Prog. Ser. v.54 Temperature requirements for growth and temperature tolerance of macroalgae endemic to the Antarctic region Wiencke C;I tom Dieck https://doi.org/10.3354/meps054189
  41. Mar. Ecol. Prog. Ser. v.59 Temperature requirements for growth and survival of macroalgae from Antarctica and Southern Chile Wiencke C;I tom Dieck https://doi.org/10.3354/meps059157
  42. Mar. Biol. v.96 Effect of solar ultra violet radiation on the kelp Ecklonia radiata Wood WF https://doi.org/10.1007/BF00394848
  43. Aquat. Bot. v.33 Photoadaptive responses of the tropical red alga Echeuma striatum Schmitz (Gigartinales) to ultra-violet radiation Wood WF https://doi.org/10.1016/0304-3770(89)90019-3