Analysis and Denoising of Cutting Force Using Wavelet Transform

Wavelet 변환을 이용한 절삭신호 분석과 노이즈 제거

  • 하만경 (부경대학교 기계공학부) ;
  • 곽재섭 (부경대학교 기계공학부) ;
  • 진인태 (부경대학교 기계공학부) ;
  • 김병탁 (부경대학교 기계공학부) ;
  • 양재용 (부경대학교 기계공학과 대학원)
  • Published : 2002.12.01

Abstract

The wavelet transform is a popular tool fer studying intermittent and localized phenomena in signals. In this study the wavelet transform of cutting force signals was conducted for the detection of a tool failure in turning process. We used the Daubechies wavelet analyzing function to detect a sudden change in cutting signal level. A preliminary stepped workpiece which had intentionally a hard condition was cut by the inserted cermet tool and a tool dynamometer obtained cutting force signals. From the results of the wavelet transform, the obtained signals were divided into approximation terms and detailed terms. At tool failure, the approximation signals were suddenly increased and the detailed signals were extremely oscillated just before tool failure.

Keywords

References

  1. G. Strang and T. Nguyen, 'Wavelet and Filter Banks,' Wellesley-Cambridge Press, pp. 221-262, 1997
  2. Yisong Dai, 'The Time-Frequency analysis approach of electric noise based on the wavelet transform,' Solid-State Electronics 22, pp. 2147-2153, 2000 https://doi.org/10.1016/S0038-1101(00)00163-5
  3. 이현동, 이광식외, '이산 웨이브렛 변환에 의한 부분방전 패턴 분석,' 한국 조명.전기 설비학회 논문집, 제15권, 제1호, pp. 84-89, 2001
  4. 박정빈, 황재문, 정성환, '웨이브렛 변환을 이용한 디지털 칼라 영상의 정보보,' 한국멀티미디어학회 춘계학술대회 발표논문집, pp. 187-192, 1998
  5. 이호철, 김윤영, 이용욱, '모드형상의 웨이브렛 변환을 이용한 보의 결함 진단,' 한국소음진동공학회 춘계학술대회논문집, pp. 430-435, 1999
  6. 박화영, 김선호, 안중환, 이만형, '이송모터 전류신호의 Wavelet 변환에 의한 공구파손 식별,' 한국정밀공학회지, 제13권, 제9호, pp. 31-37, 1996
  7. I. Daubechies, 'The wavelets transform, time-frequency localization and signal analysis,' IEEE Transactions on Information Theory, Vol. 39(5), pp. 961-1005, 1990 https://doi.org/10.1109/18.57199
  8. S. G. Mallat, 'A theory for multi-resolution signal decomposition : the wavelet representation,' IEEE Transaction on pattern Analysis and Intelligence, Vol. 11(7), pp. 674-693, 1989 https://doi.org/10.1109/34.192463
  9. D. L. Donoho, I. M. Johnstone, 'Adapting to unknown smoothness via wavelet shrinkage,' J. Amer. Statist. Assoc. Vol. 90, pp. 1200-1224, 1995 https://doi.org/10.2307/2291512
  10. D. L. Donoho, I. M. Johnstone, 'Ideal denoising in an orthonomal basis chosen from a library of bases,' Technical Report 461, Department of Statistics, Stanford University
  11. V. Cherkassky, S. Kilts, 'Myopotential denoising of ECG signals using wavelet thresholding methods,' Neural Networks Vol. 14, pp. 1129-1137, 2001 https://doi.org/10.1016/S0893-6080(01)00041-7
  12. 이현동, 이광식, '웨이브렛 변환의 노이즈 제거 기법에 의한 부분방전신호 특성, Journal of KIEE, Vol. 15, No. 4, pp. 62-68, 2001
  13. A. Bakhtazad, A. Palazoglu, J. Romangnoli, 'Process trend analysis using wavelet-based denosing,' Control Engineering Practice, Vol. 8, pp. 657-663, 2000 https://doi.org/10.1016/S0967-0661(99)00197-5
  14. Y. Wang, K. S. Moon, 'A methodology for the multi-resolution simulation of grinding wheel surface,' Wear, Vol. 211, pp. 218-225, 1997 https://doi.org/10.1016/S0043-1648(97)00120-8