References
- Bell Syst. Tech. J. v.48 Bends in optical dielectric guides E. A. J. Marcatili https://doi.org/10.1002/j.1538-7305.1969.tb01167.x
- Light transmission optics D. Marcuse
- IEEE J. Quantum Electronics v.29 Bend loss of slab and fiber Modes computed with diffraction Theory D. Marcuse https://doi.org/10.1109/3.259412
- IEEE J. Lightwave Technol. v.8 Electromagnetic fields in circular bends of slab waveguide N. Morita https://doi.org/10.1109/50.45924
- IEEE J. Lightwave Technol. v.8 Local field analysis of bent graded-index planar waveguides Y. Cheng;W. Lin;Y. Fujii https://doi.org/10.1109/50.59182
- IEEE J. Lightwave Technol. v.8 Bent planar waveguides and whispering gallery modes: A new method of analysis I. C. Goyal;R. L. Gallawa;A. K. Ghatak https://doi.org/10.1109/50.54485
- IEEE J. Lightwave Technol. v.12 Modal characteristics of bent dual mode planar optical waveguides A. Kumar;R. L. Gallawa;I. C. Goyal https://doi.org/10.1109/50.285355
- IEEE J. Lightwave Technol. v.10 Bending losses of coated single-mode fibers: A simple approach H. Renner https://doi.org/10.1109/50.136086
- IEEE J. Lightwave Technol. v.17 Modal field analysis of circularly bent single-mode fibers F. Wassmann https://doi.org/10.1109/50.762917
- IEEE J. Quantum. Electronics v.QE-11 Analysis of curved optical wave-guides by conformal transformation M. Heiblum;J. H. Harris
- IEEE J. Lightwave Technol. v.18 WKB analysis of bend losses in optical waveguides W. Berglund;A. Gopinath https://doi.org/10.1109/50.857763
- Trans. Amer. Nath. Soc. v.33 no.99 On the asymptotic solutions of ordinary differential equations, with an application to the Bessel functions of large order R. E. Langer https://doi.org/10.1090/S0002-9947-1931-1501574-0
- Handbook of mathematical functions M. Abramobitz;J. A. Stegun
- Physical Review B v.34 no.12 Exact calculation of quasi-bound states of an isolated quantum well with uniform electric field: Quantum-well Stork resonance D. Ahn;S. L. Chung https://doi.org/10.1103/PhysRevB.34.9034