DOI QR코드

DOI QR Code

Estimation of Physiological Variables for LVAS Control Using an Axial Flow Blood Pump Model

축류혈액펌프 모델을 이용한 좌심실보조장치 제어를 위한 생리학적 변수의 추정

  • 최성진 (수원대학교 전기공학과)
  • Published : 2002.12.01

Abstract

Sensors need to be implanted to obtain necessary information for LVAS (Left Ventricular Assist System) operations. Size of the sensors can prevent them from being implanted in a patient and reliabilities of the sensors are questionable for a long term use. In this wort we utilize a developed pump model to estimate flow and pressure difference across the pump without implanted sensors and present a method to obtain the physiological variables as aorta pressure and left ventricle pressure from the pump model and pulsatility of flow estimate or pressure difference estimate. These estimated variables can be used for LVAS control as an index or indices.

Keywords

References

  1. H. Schima, W. Trubel, A. Moritz, G. Wieselthaler, H. G. Stohr, H. Thomas, U. Losert, and E. Wolner, 'Noninvasive monitoring of rotary blood pumps: nceessity, possibilities, and limitations', Artificial Organs, Vol. 16, No. 2, pp. 195-202, 1992 https://doi.org/10.1111/j.1525-1594.1992.tb00293.x
  2. S. Choi, J. R. Boston, D. Thomas, and J. F. Antaki, 'Modeling and identification of an axial flow blood pump', Proc America Control Conference, pp. 3714-3715, Albuquerque, NM, June 4-6, 1997 https://doi.org/10.1109/ACC.1997.609538
  3. U. Tasche, J. W. Koontz, M. A. Ignatoski, and D. B. Geselowitz, 'An adaptive aortic observer for the penn state electric ventricular assist device', IEEE Transactions on Biomedical Engineering, Vol. 37, No. 4, pp. 374-383, 1990 https://doi.org/10.1109/10.52344
  4. G. K. Klute, U. Tasch, and D. B. Geselowitz, 'An optimal controller for an electric Ventricular-assist device: Theory, Implementation, and Testing', IEEE Transactions on Biomedical Engineering, Vol. 39, No. 4, pp. 394-403, 1990 https://doi.org/10.1109/10.126612
  5. J. R. Boston, M. A. Simaan, J. F. Antaki, Y-C Yu, S. Choi, 'Intelligent control design for heart assist devices', Proc 1998 ISIC/CIRA/ISAS Joint Conference, pp. 497-502, Gaithersburg, MD, September 14-17, 1998 https://doi.org/10.1109/ISIC.1998.713712
  6. S. Choi, J. F. Antaki, J. R. Boston, and D. Thomas, 'A sensorless approach to control of a turbodynamic left ventricular assist system', IEEE Transactions on Control Systems Technology, Vol. 1, No. 4, pp. 270-279, 1993 https://doi.org/10.1109/87.918900
  7. A. J. Blauch, M. Bodson, and J. Chiasson, 'High speed parameter estimation of stepper motor', IEEE Transactions on Control Systems Technology, Vol. 1, No. 4, pp. 270-279, 1993 https://doi.org/10.1109/87.260272
  8. A. P. Lioi, J. L. Orth, K. R. Crump, G. Diffee, P. A. Dew, S. D. Nielsen, and D. B. Olsen, 'In vitro development of automatic control for the activley Filled Electrohydraulic Heart', Artificial Organs, Vol. 12, No. 2, pp. 152-162, 1988 https://doi.org/10.1111/j.1525-1594.1988.tb02748.x
  9. J. R. Boston, L. Baloa, Dehou Liu, M. A. Simaan, S. Choi, and J. F. Antaki, 'Combination of data approaches to heuristic control and fault detection', IEEE Conference on Control Applications and International Symposium on Computer-Aided Control Systems Design, pp. 98-103, Anchorage, AK, September 25-27, 2000 https://doi.org/10.1109/CCA.2000.897406
  10. F. M. Donovan, 'Design of a hydraulic analog of the circulatory system for evaluating artificial hearts', Biomat., Med. Dev., Art. Org., Vol. 3, No. 4, pp. 439-449, 1975
  11. S. Choi, Modeling and Control of Left Ventricular Assist System, Ph.D. Thesis, University of Pittsburgh, 1998