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‘We have developed an finite-difference time-domain program that can analyze photonic devices
with gain and/or dispersion. As an example, a two-dimensional photonic-crystal laser is simulated.
The simulation can show the relaxation oscillation behavior at extremely high current injection.
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I. INTRODUCTION

Recently, application of the finite-difference time-
domain (FDTD) analysis [14] to various engineering
problems is becoming practical owing to remarkable
development of high-speed computers. The need for
such a program in the analysis of photonic-crystal de-
vices is especially recognized in that the capability
of other conventional techniques such as the beam-
propagation analysis and various types of frequency-
domain analysis is seriously limited for the purpose.

Among many photonic-crystal devices, photonic-
crystal lasers (1] attracted a considerable attention
because the capability of such devices is not yet fully
investigated since they have not been made close to
perfection. Unlike conventional semiconductor lasers
including vertical-cavity lasers, distributed-feedback
(DFB) lasers, and distributed-Bragg-reflection (DBR)
lasers, analysis of photonic-crystal lasers is rela-
tively difficult because of their inherent fully-three-
dimensional characteristics and their quite compli-
cated modal and polarization characteristics. A con-
siderable amount of research [5,13] is being carried on
two-dimensional photonic-crystal lasers formed on a
slab-waveguide of half-wavelength width. Design of
the structure is made mostly with the operating prin-
ciple of DBR in mind.

In this paper, we report on the development of a
FDTD simulator which can analyze such photonic-
crystal lasers. The gain medium is modeled by a re-
gion of an inverted carrier-density with the generalized
Lorentz-dispersion characteristics, the idea of which
appeared in [4] as a two-dimensional implementation

- 87 —

for the application to a semiconductor amplifier struc-
ture. In this paper, we have gone further by doing a
three-dimensional analysis to analyze a semiconductor
laser structure with the interaction between the carri-
ers and the electromagnetic fields fully integrated.

The regions for dispersive media and perfectly-
matched layers (PML's) (2] are fully integrated in the
code for full parallelization and efficient memory han-
dling. For such apurpose, artificial layers of anisotrop-
ically dispersive electric/magnetic media [9] are in-
troduced in all computation boundaries, while the
recursive-convolution method [6] with the piecewise-
constant approximation [11] has been used for simula-
tion of both the dispersive media and the PML layers.
We have found that this combination, which is be-
ing reported here for the first time, allows the most
efficient coding and memory usage amenable to par-
allelization.

Both a fully three-dimensional version as well as
the two-dimensional version of the simulator are de-
veloped simultaneously with almost all components of
the code shared between the two versions. However, a
three-dimensional simulation is necessary because in
most cases of photonic-crystal lasers, we are certainly
interested in the wave which radiates in the vertical
direction after all. It is of unknown possibility that
a clever two-dimensional simulation may well give a
good amount of useful information in the case of semi-
conductor lasers of the edge-emitting type. However,
we believe that a three-dimensional analysis is a must
for the sake of confidence in most applications to simu-
lations of photonic-crystal lasers of any material type.

As mentioned, analysis of the relaxation oscillation
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of emitted optical power of the laser requires a feed-
back mechanism between the optical energy and the
carriers in the active layer of the semiconductor. Here,
a new kind of the rate equation for the number of elec-
tron carriers in the active layer has been developed for
this purpose and solved numerically.

A great deal of the components of the simulator
must work together to simulate the turn-on of the
semiconductor photonic-crystal laser with a simulated
gain spectrum with a characteristic relaxation oscil-
lation behavior which have turned out to be rather
unlikely in reality in such a small-size cavity semicon-
ductor laser.

II. THE FINITE-DIFFERENCE
TIME-DOMAIN METHOD WITH
DISPERSION

We simulate the four Maxwell equations

V- é(r,w)E =0, (1)
V- fir,w)H = 0, (2)
V x E = iwj(r,w)H, (3)
V x H = —iwé(r,w)E, (4)

with the generalized electric permittivity tensor
é(r,w) and the magnetic permeability tensor j(r,w)
with a certain type of frequency dependence. The two
material tensors are “generalized” in the sense that

*© . —iwt dw
/—oo [J(r,w) — iwD(r,w)]e o

=— /00 iwé(w)E(r, w)e”i“"t%. (5)

oo 2m

8D(r, t)
ot

where J(r,w) refers to the current density due to mo-
tion of free carriers

1. Perfectly-matched layers

In the PML, according to the algorithm of perfectly-
matched anisotropic layers (9], the electric permittiv-
ity and the magnetic permeability are expressed as

£(r,w) = E(Ww)A(r,w),

. _ | poA(r,w), in the PML,
fi(r,w) = . : : . .
to, in the inner dispersive region,

where é(w) is the electric permittivity of the inner re-
gion, while the tensor of a diagonal matrix A(r,w) is
shared in the PML as a factor between the electric
permittivity and the magnetic permeability. The Ith
diagonal element can be expressed as

M, ()
Au(l‘, =1+ Z F P (r)(p) Ql(r)

~—1w )

l=x,y,z

(8

where M; is the order of the rational function repre-
senting the Ith diagonal component of the permittivity
in the region containing the position denoted by r.

2. Gain dispersive medium

In the inner region of dispersion, the three diagonal
elements are basically the same, which represents an
isotropic material of dispersion with gain or loss. In
order for the dipole resonance to be expressed mathe-
matically as a real function of time, all the poles, other
than the ones on the imaginary axis of the complex-w
plane, and their corresponding residues should exist
in complex-conjugate pairs, so that the simplest im-
plementation of the gain medium is modeled as the
electric-permittivity function of

N
A ) @ o
é(w) = &(00) {1 + ; [_iw @ T T o 3(4)*} ’
9)

We should choose £(00) as the base electric permittiv-

- ity by which the background spectrum of the electric

permittivity of the medium, representing the contri-
bution from the dipole resonance at frequencies sub-
stantially higher than the spectral range of interest,
is adequately taken care of. It should thus be differ-
ent from the true physical permittivity at w — oo.
N is the number of pole pairs, each of which forms a
so-called Lorentzian function unit in the form of

2
) = e | T
MeEQ 2Wq (W —wWq +1iY7g W+ wg+ivy
N. 2
~ e e fq (10)

2 _j '
Me€o Wi — w? — 12w

participating for the total sum in the right-hand side
of (9).

The poles and residues are matched to the resonance
frequencies wy and the damping constants -, as

5@ = —Yq + lwg, (11)

r@ = £ ;05(00) f?;q’ (12)

where f, is the oscillator strength of the gth resonance,
satisfying the sum rule;

N
Yo fa=1. (13)
g=1
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Physically, dispersion accompanies either gain or
loss. It is well-known that a status of so-called popu-
lation inversion is required for the material to provide
gain for a passing optical wave. The population in-
version is represented the most properly by a negative
parameter for the available number of dipoles N,. In
simulation, it is parameterized by a negative number
for £(0) — &(o0).

3. The recursive-convolution technique with the
anisotropic PML

The key to the FDTD simulation on a dispersive
medium is in the implementation of (5) in the time
domain. We express each vector component as

t

Bi(r,t) = / ult —)E(n ) dE,  (14)
- 00

i.e., a convolution of &(r,t) with each element of the

inverse Fourier transform of the diagonal tensor (r, w)

of (6), expressed as

)= [ ewhulnwers
N,
= £(00) {5@) + 3 Rex®@(r,t) + Qi ¢ 9(t)} (15)
q=1
with
)2}")(1', t) = Rl(q)(r)e(t) exp (sf")t), (16)

where d(t) is the Dirac delta function, and 6(¢) is the
Heaviside step function defined to be 1 for t > 0 or
0, otherwise. Subscript [ has been appended to N of
(9) for (15), counting the “reduced” number of simple
poles of the rational function correctly, for the purpose
of combining the case of Lorentzian dispersion and
that of the PML. For the two symmetrically paired
poles of each Lorentzian spectral function in each term
of the summation in (9), only one pole is counted in

with an appropriate modification of its corresponding

residue for ¥'?(¢) in (16) as

R{® = or®) (17)

which is pure-imaginary, according to (12). Thus, this
procedure allows simplification in the case of paired
Lorentzian poles in line with the case of simple poles.
That is, for all other terms, Rl(q) = I‘l(p ) and is real.

We have employed the piecewise-constant recursive-
convolution technique which was first introduced in
Ref. {11]. Accordingly, fields, e.g., &(r,t), are ap-
proximated numerically as

&i(r,t) = &|" (18)

for [n —1/2) At < ¢t < [n+1/2] At, where At is the
width of each time step in the FDTD simulation. The
advantage of using this scheme over the piecewise-
linear approximation scheme, which was introduced
actually more recently in Ref. [3] than the piecewise-
constant scheme in Ref. [11], resides in the fact that
the latter needs the field values in just the previous
time step unlike the former requiring those in two time
steps. It is thus considered as probably the best com-
promise between the speed and accuracy of the result
of the FDTD simulation for dispersive media.

Based on the piecewise-constant approximation
scheme, formulas suitable for numerical implementa-
tion are rederived as

N,
1 -{9)10,1/2 +1
[Z{ + q};lReX, ) A (19)

YRR
= [_A__Z _ ZRex’(q)}-l/z,O} El}n
q

=1
- %Re { [1 _ e—sf“)At] @é‘f),rﬁl} _ Q11511n+1/2
g=1

£V x H‘WH/Z
P
£(o0)

where £} - V x H represents the /th component of the
vector obtained by the curl operation in the spatial-
difference form. The above relation along with recur-

sive relations for @é‘l’){” and Zg, | given as
(I)(glf)ln-f-l _ {[)vq(q)lo,l/‘z 4 X{q)(—l/z,o] &l" + (I)g)(n}

xesi” At (21)
Igl|n+1/2 — Iglln~—1/2 + gl[n’ (22)

Note that (20)—(21) are written in terms of )El(q) [0.1/2

and )Z,(q) |=1/2.0 only. Unlike the simple approximation
in (18) or the two other mentioned schemes for field
values, these two parameters are to be evaluated at a
level of much higher accuracy, by an appropriate inte-
gral over the exponential shape of the xl(q) (t) function.
That is,

@ , 1 n' At (@
qu v = Z‘t_/ X (t)dt (23)
nAt
yielding the following results;
D012 = RDexprl(s(9) At/2), (24)
>v<l(q)‘—1/210 = Rl@) exprl(—-Sl(q)At/Q) (25)

with

1, z =0,
exprlz = ¢ expz—1 (26)
z

, otherwise.



90 Journal of the Optical Society of Korea, Vol. 6, No. 3, September 2002

Eq. (20) thus provides the needed algorithm which al-
lows systematic treatment for the dispersive material
in FDTD simulations with the least amount of com-
puter memory for the iterative time-stepping compu-
tation.

An almost identical form of the difference equation
gives an expression for the update of the magnetic field
because the electric susceptibility and the magnetic
susceptibility share exactly the same tensor structure
in the PML, as indicated in (6)-(7), and g = pg in
the inner regions. Hence, in the PML,

N
L ~(a)10,1/2 n+1/2
[-A—Z-!-ZRexl | Hy|m
g=1
1L A @
_ s (@)-1/2,0 -1/2
- [At > Res(?) } "
q=1
N (@
_ ZRe { [1 e At} q)ggl)ln+l/2} - Quw,|"
q=1

-V xEMm
e
Ho

(27)

with
‘I"()g,)lnﬂm _ {[Xz(q)|0’1/2 4 X§Q)|—1/2’0] Hlln_l/z

+ @;‘fﬂ"“l/z} exp(sl(Q)At) (28)

again in terms of )Zl(q)|0,1/2 and )Zl(q)|‘1/2*0 only. The
contribution from double poles is computed by an-
other recurrence relation

I, ™ = Tng, "1 + ™ (29)
In the inner region with u = po, a much simpler equa-
tion as

n+1/2 n—1/2 L Elm
Hi| _ Hyl + -V x | (30)

At At Mo

suffices.

I1II. MODEL FOR THE GAIN MEDIUM AND
THE POPULATION INVERSION

The gain-dispersion characteristics of the active
semiconductor medium are modeled by the Lorentzian
formula of Eq. (9) with a single pair of poles. Evi-
dently, it is a rather gross simplification for the in-
homogeneously broadened gain-spectrum structure of
any semiconductor medium. For the simulation of the
gain medium, we performed an “experimental” fit be-
tween location of the poles and the carrier density of in
the active region to obtain its relation to the numbers
for 73 and wq. Therefore,

s = -7 + iwy, (31)

Having a model with the dispersion and gain will
result in a perturbation in the refractive index. Rel-
atively speaking, this perturbation does not appear
critically important because the £(c0)/eq is present
in the background. However, the perturbation in the
imaginary part is crucial. The peak gain happens at
w = wjy. Out of the two terms with the minus sign in
front,

wi [€(w1)  €(0) —€(c0) wi [ g 11
I =-2 — ~ — |p —
my(w;) o\ o - P -p"]

(32)

must be related to

w1 Imé

Glwy) ¥ ——

- pI] ] (33)

where n’ is the real refractive index of the medium.
The factor p!! —p! in both relations can be replaced by
2p'! — 1. However, the individual probabilities should
find themselves in the expressions for the respective
residues from the known parameter values of y; and
€(0) — &(00).

IV. INTERACTION BETWEEN LIGHT AND
MATTER

Beside the amplification of the propagating light
which is present in the medium, there exists spon-
taneous emission which actually provides the seed for
the amplifying light in the medium. Such emission of
light is modeled by a randomly oriented polarization
current density with the magnitude properly deter-
mined in each cell of the FDTD model.

When the active layer of the semiconductor is overly
populated by the established difference AEr between
the two quasi-Fermi levels, the spontaneous emission
is enhanced according to

i(nn(t)) = Gk [(nu(t)) —mP] - MQ‘Z;E—_%

4
dt P > (34)

where

1
exp([fiwx — AEF]/kgT) — 1

—GgnP = (35)

accounts for the rate of spontaneous emission en-
hanced from that of thermal equilibrium owing to
pumping causing AEY > 0. These two sources of light
generation can be implemented in the FDTD simula-
tor, once each module is properly prepared.
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The additional polarization field in the presumed
absence of the dipoles resonating at the lasing fre-
quency is included in £(00)&(r, t) presumably with no
dispersion. The additional polarization field in the
presumed absense of the dipoles resonating at the las-
ing frequency is included in &(c0)&(r,t). In actual
simulation, one can only put the permittivity value
sufficiently beyond the lasing frequency and, if optical
pumping is being simulated as well, the pump fre-
quency. We have denoted this permitivity value by
£(o0) in

D(r,t) = &(00)E(x, ) + P(r,t) + PP(r,t),  (36)

where P(r,¢) and PP(r, ) represent the polarization
fields due to interaction (mostly emission) of light at
the lasing frequency and due to interaction (mostly
absorption) at pump frequency, respectively.

Similar to a case of the dynamic simulation [7] based
on the analysis of resonance modes on a semiconductor
laser, we need a rate equation which updates the num-
ber of carriers inside the active region. The equation
can be obtained by considering the classical theorem
of J. H. Poynting in regard to the energy balance [12].
According to the theorem,

el P00 g B Dt o TP
Veelx L B omt e S Sl e g
(37)

y [um]
y [pm]

0

z [um]

= [um]
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The polarization current 07!/t in the last term of the
left-hand side represents the interaction of the exter-
nal field and the dipoles in the semiconductor active
medium. This term is balanced with the energy which
is provided either by the injection current or by the
pumping light.

For the case of current injection, the rate equation
can be written as

(38)
where
No(t) = / / /V el (39)

is the total number of carriers in the active layer of
volume Vg, and I9(¢) is the injection current. Here,
hw) is the energy of a single photon at lasing frequency.

It has been assumed that some minor optical pro-
cesses such as free-carrier absorption and various op-
tical scattering processes are ignored.

2x10% 4x10°
ampl.

y [um}

-1 0 1 2
z [um]

FIG. 1. Simulated field profile of the lasing mode built-up in a photonic crystal microcavity. The three plots in the right
column show the snapshots of &, &, and &;, while those of the left column show the snapshots of Hx, Hy, and H..
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FIG. 2. The relaxation oscillation behavior obtained
from the three-dimensional simulator at the simulated cur-
rent level of 30 A. (a) The photon numbers in the micro-
cavity (b) the average carrier density.

V. THREE-DIMENSIONAL SIMULATION
RESULTS

From the considerations in the foregoing sections,
we have performed a three-dimensional calculation on
a structure which has become well-known from the
publication of its structure once published in Science
[8]. In the simulation, we assumed the case of current
injection instead of optical pumping in their experi-
ment. As mentioned previously, the choice of the two-
dimensional simulator and the method of pumping is
largely driven by the need in the development stage
of the simulator which requires a tremendous amount
of computer resources in terms of computing time and
memory. We first tried to find the condition for the
relaxation oscillation while we are finding the lasing

optical mode. As expected from the known property
[10] of the triangular lattice structure with a single
defect made of a missing hole at the center, the las-
ing mode has been found to be the doubly-degenerate
dipole-shaped field as shown in Fig. 1. The animation
obtained from the simulator has shown that the axis
of the dipole field is constantly rotating. It confirms
that the mode is doubly-degenerate as the theory in-
dicates.

The two plots of Fig. 2 show the familiar appear-
ances at a certain level of current injection. The mag-
nitude of the injected current has been set at 30 am-
peres which is unrealistically high. This choice has
been made to show the relaxation oscillation which
has been regarded as one of the lasing properties of a
typical semiconductor laser.

To understand why such a high injection current is
required to observe the relaxation oscillation, we made

20

photon nurmbers {x 10%}
S G

o

(a)

tio”
tioh oscll®
xat!
elo

» w
=3 @
3 3

@
>

photon numbers (= 107}

FIG. 3. Excitation of several longitudinal modes show-
ing relaxation oscillation behavior. (a) In a semiconductor
laser of a typical size driven by current level of 10 mA. (b)
In a microcavity laser with the mode volume of 5 um?®)
driven by a 100 mA.
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a small well-known mode based simulation on the evo-
lution of longitudinal modes. However, as shown in
Fig. 3, only excessive high injection current makes
the oscillation speed sufficiently high for any relax-
ation oscillation to show up. This can be explained
by carefully considering the sign of

2
{%__2_’)’_1\(] + KonKnp (40)

from the analytic formula for relaxation oscillation.
Here, vy and 7y, are the damping constants for the
carrier density fluctuation and for the photon density
fluctuation, respectively, and Kn, and K.y are the
two coupling coefficients between the two small-signal
rate equations for the carrier density and the photon
density, respectively.

For a micro-cavity laser, the value of the Ky Ken
becomes a relatively small negative number. In order
to observe any relaxation oscillation, we should drive
up the injection current unrealistically high. That is
the reason that our simulation has required an unre-
alistically high injection current. In a different per-
spective, we may state that the relaxation oscillation
should not be considered as the characteristic proper-
ties of a semiconductor laser.

At the practical level of either optical pumping or
current injection, we conclude that the microcavity
laser of this kind will not show the relaxation oscilla-
tion behavior at the practical level of current injection.

y [um]
y {pm]

z [um]
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1. Band-edge photonic-crystal lasers

If the photonic-crystal structure does not have the
center defect, the structure can be considered a two-
dimensional analog to the one-dimensional structure
which is usually called the distributed feedback laser
rather than a distributed Bragg reflection laser with
the center quarter-wave phase mismatch in the mid-
dle.

The field profile of the lasing mode of such a band-
edge photonic-crystal laser is given in Fig. 4.

The basic working principle of the so-called band-
edge laser is the same as a conventional DFB laser in
that a DFB laser as the one-dimensional analog oscil-
lates at frequency of the two band edges of the stop
band created by the periodic structure. In order to
confirm such a behavior, we have simulated by align-
ing the peak of the gain spectrum at the top edge of
lower band as shown in Fig. 5 The normalized res-
onance frequency from simulation has been found at
ka/2mw = 0.32 which agreed nicely with the normalized
frequency at the top of the lowest photonic band at
the K point in the two-dimensional reciprocal space.

The relaxation behavior of the carrier denstiy and
the photon occupation number in the cavity is shown
in Fig. 6. Unlike Fig. 2(a), there exists some initial
anomaly in the relaxation curve for the photon occu-
pation number. With the complexity of the distribu-

ampl.

ampl.

y [pm]
[=]

-2 o 1 2

@ [um]

FIG. 4. Field profle of the band-edge photonic-crystal laser.
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FIG. 5. Confrmation of the oscillation frequency in
the band-edge photonic crystal laser. The arrow in the
right indicates the frequency at the top of the first band
(ka/2m = 0.32 ) obtained at the K point in the reciprocal
space.

ted-gain medium of a DFB laser being considered,
such an anomaly appears to be the result of the tran-
sient operating point seeking its steady state.

V1. SUMMARY

In summary, we have developed a three-dimensional
FDTD simulator in which the scheme of anisotropic
PML’s and the piecewise-constant approximation
for recursive-convolution integral are integrated for
the numerical analysis of a gain medium with the
Lorentzian dispersion spectrum. With this new func-
tionality of the simulator, we have been able to nu-
merically create a situation for relaxation oscillation.
The preliminary result suggests that the lasers of this
kind will not show the typical relaxation oscillation
except the initial overshoot of the light output at the
initial turn-on time-delay.

We then performed a simulation of a two-
dimensional distributed-feedback photonic-crystal mi-
crocavity laser in which the imaginary part of the dis-
persion function of the medium plays an essential role
in its choice of the lasing frequency and the noise char-
acteristics. There are a number of findings from the

alaa gy

carrier density [x 10'® em™}

1x10

8x107
6 -
6x10 PhC DFB

4X107

photon number

Ot v 0 PP P
0.0 0.2 0.4 0.6 0.8 1.0
time [ps]

(b)

FIG. 6. Relaxation oscillation behavior of car-
rier density and the photon occupation number of a
two-dimensional DFB laser.

simulation, each of which need to be carefully studied
for its physical implication. These are the topics of
future study.
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