DOI QR코드

DOI QR Code

Rod Milling에 의해 제작된 비평형 Al(Fe-Cu) 합금 분말의 형성 및 Chemical Leaching

Formation and Chemical Leaching of a Non-Equilibrium Al(Fe-Cu) Alloy Powder produced by Rod-Milling

  • 발행 : 2002.10.01

초록

We report the structure, thermal and magnetic properties of a non-equilibrium $Al_{0.6}(Fe_{50}Cu_{50})_{0.4}$ alloy powder produced by rod milling and chemical leaching. An X-ray diffractometry(XRD), a transmission electron microscope(TEM), a differential scanning calorimeter(DSC), a vibrating sample magnetometer(VSM), and superconducting quantum interference device(SQUID) were utilized to characterize the as-milled and leaching specimens. The crystallite size reached a value of about 8.82 nm. In the DSC experiment, the peak temperatures and crystallization temperatures decreased with increasing milling time. The activation energy of crystallization is 200.5 kJ/mole for as-milled alloy powder. The intensities of the XRD peaks of as-milled powders associated with the bcc type $Al_{0.5}Fe_{0.5}$ structure formative at $350^{\circ}C$ sharply increase with increasing annealing temperature. Above $400^{\circ}C$, peaks alloted to $Al_{0.5}Fe_{0.5}$ and $Al_{5}Fe_{2}$ are observed. After annealing at $600^{\circ}C$ for 1h, the leached Ll specimen transformed into bcc $\alpha$-Fe and fcc Cu phases, accompanied by a change in the structural and magnetic properties. The saturation magnetization decreased with increasing milling time, and a value of about 8.42 emu/g was reached at 500 h of milling. The coercivity reached a maximum value of about 142.7 Oe after 500 h of milling. The magnetization of leached specimens as function of fields were higher at 5 K, and increased more sharply at 5 K than at 100 K.

키워드

참고문헌

  1. Appl. Phys. Lett. v.43 C. C. Koch;O. B. Cavin;C. G. McKamey;J. O. Scarbrough https://doi.org/10.1063/1.94213
  2. Acta Metall. v.32 C. C. Koch;P. Kasiraj;T. Vreeland, Jr.;T. J. Ahrens https://doi.org/10.1016/0001-6160(84)90131-7
  3. Appl. Lett. v.49 R. B. Schwarz;C. C. Koc https://doi.org/10.1063/1.97206
  4. Appl. Phys. Lett. v.55 J. Eckert;L. Schultz;K. Urban
  5. J. Alloys Compounds v.239 H.-G. Kim;K. Sumiyama;K. Suzuki https://doi.org/10.1016/0925-8388(96)02274-8
  6. J. Mater. Res. v.7 J. Eckert;J. C. Holzer;C. E. Krill;W. L. Johnson https://doi.org/10.1557/JMR.1992.1751
  7. J. Korean Phys. Soc. v.31-1 H. G. Kim;W. N. Myung;K. Sumiyama;K. Suzuki
  8. J. Alloys Comp. v.260 H. G. Kim;K. Sumiyama;K. Suzuki https://doi.org/10.1016/S0925-8388(97)00151-5
  9. Int. J. Non-Equilibrium Processing v.11 H. G. Kim;W. N. Myung
  10. J. Alloys Comp. v.199 S. A. Makhlouf;K. Sumiyama;K. Suzuki https://doi.org/10.1016/0925-8388(93)90436-Q
  11. J. Alloys Comp. v.189 S. A. Makhlouf;E. Ivanov;K. Sumiyama;K. Suzuki https://doi.org/10.1016/0925-8388(92)90056-F
  12. Appl. Catal. v.8 P. Fouilloux https://doi.org/10.1016/0166-9834(83)80051-7
  13. Elements of X-ray Diffraction B. D. Cullity;M. Cohen(ed.)
  14. Acta Met. v.1 G. K. Williamson;W. H. Hall https://doi.org/10.1016/0001-6160(53)90006-6
  15. Proc. Phys. v.A62 W. H. Hall
  16. J. Alloys Compounds v.322 H.-G. Kim;Wah-Nam Myung;K. Sumiyama;K. Suzuki https://doi.org/10.1016/S0925-8388(01)01214-2
  17. Anal. Chem. v.29 H. E. Kissinger https://doi.org/10.1021/ac60131a045