DOI QR코드

DOI QR Code

A Photocatalytic Degradation of Bromate over Nanosized Titanium Dioxide Prepared by Reverse Micelle

역상마이셀에 의한 나노크기 이산화티탄의 제조 및 브로메이트 광분해 특성

  • 이만식 (부산정보대학 환경화학계열) ;
  • 홍성수 (부경대학교 화학공학부) ;
  • 박홍재 (인제대학교 환경시스템학부) ;
  • 정영언 (부산정보대학 환경화학계열) ;
  • 박원우 (부산정보대학 환경화학계열)
  • Published : 2002.09.01

Abstract

Nanosized titania sol has been produced by the controlled hydrolysis of titanium tetraisopropoxide(TTIP) in sodium bis(2-ethylhexyl)sulfosuccinate(AOT) reverse micelles. The physical properties, such as crystallite size and crystallinity according to R ratio have been investigated by FT-IR, XRD and UV-DRS. In addition, the photocatalytic degradation of bromate has been studied by using batch reactor in the presence of UV light in order to compare the photocatalytic activity of prepared nanosized titania. It is shown that the anatase structure appears in the 300~$600^{\circ}C$ calcination temperature range and the formation of anatase into rutile starts above $700^{\circ}C$. The crystallite size increases with increasing R ratio. In the photocatalytic degradation of bromate, the photocatalytic decomposition of bromate shows the decomposition rate increases with decreasing initial concentration of bromate and with increasing intensity of light.

Keywords

References

  1. Hong, S. S., M. S. Lee, J. H. Kim, B. H. Ahn, K. T. Lim, and G. D. Lee, 2002, Photocatalytic Decomposition of Bromate over Titanium Dioxides Prepared Using, Sol-Gel Method, J. Ind. Eng. Chem., 8, 150.
  2. Palmisano, L., V. Augugliaro, M. Schiavello, and A. Sclafani, 1989, Influence of Acid-base Properties on Photocatalytic and Photochemical processes, J. Mol. Catal., 56, 284. https://doi.org/10.1016/0304-5102(89)80192-0
  3. Jang, H. D., S. K. Kim, and S. J. Kim, 2001, Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties, J. Nano. Res., 3, 141. https://doi.org/10.1023/A:1017948330363
  4. Suryanyana, C. and Froes, F. H., 1992, The Structure and Mechenical Properties of Metallic Nanocrystal, Metall. Trans., 23A, 1071.
  5. Alivisatos, A. P., 1995, Semiconductor Nano-crystal, MRS Bull., Aug., 23
  6. Reddy, K. M., C. V. G. Reddy, and S. V. Manorama, 2001, Preparation, Characterization, and Spectral Studies on Nanocrystalline Anatase $TiO_2$, J. Sol. Stat. Chem., 158, 180. https://doi.org/10.1006/jssc.2001.9090
  7. Moran, P. D., J. R. Bartlett, G. A. Bowmaker, J. L. Woolfrey, and R. P. Cooney, 1999, Formation of $TiO_2$ Sols, Gel and Nanopowders from Hydrolysis of $Ti(O^iPr)_4$ in AOT Reverse Micelles, J. Sol-Gel Sci. Technol., 15, 251. https://doi.org/10.1023/A:1008741109896
  8. Cullity, B. D., 1978, Elements of X -Ray Diffraction., Adison-Wesley, Reading, MA.
  9. Ha, H. Y. and M. A. Anderson, 1996, Photodegradation of Organic Pollutants in Water Using Metal-Supported $TiO_2$ Catalysts Prepared by Sol-Gel Techniques, HWAHAK KONGHAK, 34, 356.
  10. Wang, Z. C., J. F. Chen, and X. F. Hu, 2000, Preparation of nanocrystalline $TiO_2$ powders at near room temperature from peroxopolytitanic acid gel, Mater. Letters, 43, 87. https://doi.org/10.1016/S0167-577X(99)00236-0
  11. Wolf, K., A. Yazdani, and P. Yates, 1991, Chlorinated Solvents : Will The Alternatives be Safer?, J. Air Waste Manage. Assoc., 41, 1055. https://doi.org/10.1080/10473289.1991.10466899
  12. Turchi, C. S. and D. F. Ollis, 1990, Photocatalytic Degradation of Organic Water Contaminants : Mechanisms Involving Hydroxylradical Attack, J. Catal., 122, 178. https://doi.org/10.1016/0021-9517(90)90269-P