DOI QR코드

DOI QR Code

Effect of microbial product on microorganisms in soil and growth of cabbage and tomato

미생물제재 처리에 의한 토양 미생물상의 변화 및 배추와 토마토의 생장에 미치는 영향

  • 김지모 (동아대학교 생명자원과학대학 생물공학 전공) ;
  • 김철승 (동아대학교 생명자원과학대학 응용생물학 전공) ;
  • 김현주 (동아대학교 생명자원과학대학 응용생물학 전공) ;
  • 문병주 (동아대학교 생명자원과학대학 응용생물학 전공) ;
  • 이재헌 (동아대학교 생명자원과학대학 생물자원전공) ;
  • 이진우 (동아대학교 생명자원과학대학 생물공학전공)
  • Published : 2002.10.01

Abstract

Effect of the microbial product, which consisted of Bacillus coagulans DL-1 and rice bran, on the microorganisms in soil and growth of cabbage and tomato was investigated. Bacillus congulans DL-1 was isolated form the soil and identified in this study. Total number of microorganisms in the soil treated with the microbial product was higher than the untreated soil. The growth of cabbage and tomato on the soil treated with microbial product was faster than that on the untreated soil. The treatment of microbial product in the soil resulted in the increase of useful microorganisms, which seemed to enhance the growth of cabbage and tomato. It seemed that microbial product can increase the number of certain microorganisms and change the ratio of different species of microorganisms.

유기물이 풍부한 토양에서 분리한 Bacillus coagulans DL-1을 사용하여 미생물제재를 제조하고 미생물제재의 처리가 배추와 토마토 재배 토양의 미생물상에 미치는 영향과 배추와 토마토의 생장에 미치는 영향을 조사하였다. 일정한 시간이 지난 후, 미생물제재를 처리한 배추와 토마토 재배 토양의 총균수는 미생물제재를 처리하지 않은 토양에 비하여 4.4~10.6 배가 증가하였다. 미생물제재를 처리한 토양의 미생물 수는 제재를 처리하지 않은 공시작물 재배 토양에 비하여 세균뿐만 아니라 방선균, 곰팡이 및 트리코데마도 일정한 비율로 증가하였다. 미생물제재를 처리한 토양에서 자란 배추의 생체중량, 배추잎의 넓이 및 개수는 무 처리구에 비해서 21.5%, 10.6%, 10.0% 가 증가하였다. 미생물제재를 처리한 토양에서 자란 토마토 열매의 생체중량, 근장으로 뿌리를 곧게 편 후 최장길이 및 열매의 직경은 무처리구에 비하여 30.4%, 10.6%, 10.% 가 증가하였다. 미생물제재를 처리한 토양은 처리하지 않은 토양에 비하여 전체적인 미생물 수의 증가와 유용한 종류의 미생물이 상대적으로 높게 증가하기 때문에 배추와 토마토의 성장이 높은 것으로 생각된다.

Keywords

References

  1. Phytopathol v.77 Rhizosphere competence of Tricoderma harzianum Ahmad, J. S.;R. Baker https://doi.org/10.1094/Phyto-77-182
  2. methods of soil Analysis, Part 2: Chemical and microbiological properties Most probable number method for microbial populations Alexander, M.;A. L. Page(ed.);R. H. Miller(ed.);D. R. Keeney(ed.)
  3. Environ. Microbiol. v.4 Effect of oil pollution on euendolithic cyanobacteria of the Arabian gulf Al-Thukair;A. Assad https://doi.org/10.1046/j.1462-2920.2002.00276.x
  4. J. Biotechnol. v.89 no.23 Biostoning of denims by Penicillium occitanis (Pol6) cellulases Belghith, H.;S. Ellouz-Chaabouni;A. Gargouri https://doi.org/10.1016/S0168-1656(01)00309-1
  5. Enz. Microb. Technol. v.24 Lichenase production by catabolite repression-resistant Bacillus subtilis mutants: optimization of an agro-industrial by-product medium Ehab, R. E.;M. E. Amany https://doi.org/10.1016/S0141-0229(98)00125-2
  6. Can. J. Microbiol. v.28 Degradation of plant pathogenic fungi by Tricoderma harzianum Elad, Y.;I. Chet;Y. Henis https://doi.org/10.1139/m82-110
  7. Appl. Microbiol. Biotechnol. v.45 Thermostable alkaline proteases of Bacillus licheniformis MIR 29 : isolation production and characterization Ferrero, M. A.;G. R. Castro;C. M. Abate;M. D. Baigori;F. Sineriz https://doi.org/10.1007/s002530050691
  8. Kor. J. Microbiol. v.33 Effects of bioremediation products on the oil degradability Kim, S. J.;S. K. Shin
  9. Enz. Microb. Technol. v.30 Purification and characterization of new endo-1,4-glucanases from Rhizopus oryzae Koichiro, M.;T. Nishimura;Y. Nakamura;J. Koga;T. Moriya;N. Sumida;T. Yaguchi;T. Kono https://doi.org/10.1016/S0141-0229(01)00513-0
  10. Kor. J. Limnol. v.26 Ecological study on the aquatic insect community in organic and chemical farming rice paddies Lee, D. K.
  11. Geodrama v.105 Indications for soil organic matter quality in soils under different management Lutzow, V. M.;J. Leifeld;M. Kainz;I. Kogel-Knabner;J. C. Munch https://doi.org/10.1016/S0016-7061(01)00106-9
  12. Laboratory manual for the examination of water, and soil Pump, H. H.;H. Krist
  13. Appl. Microbiol. Biotechnol. v.57 Degradation of crude oil by marine cyanobacteria Raghukumar, C.;V. Vipparty;J. J. David;D. Chandramohan https://doi.org/10.1007/s002530100784
  14. J. Indian Bot. Soc. v.59 Streptomyces rochei in relation to Alternaria bassicicola on the surface of brown's arson Sharma, S. K.;J. S. Gupta
  15. Agr. Ecosyst. Environ. v.62 A model for fossil energy use in Danish agriculture used to compare organic and conventional farming Tomy, D.;H. Niels;R. P. John https://doi.org/10.1016/S0167-8809(96)01116-4
  16. Nature v.410 Urban myths of organic farming Trewavas, A. https://doi.org/10.1038/35068639
  17. Plant Dis v.75 Factors relating to peanut yield increases after seed treatment with Bacillus subtilis Turner, J. T.;P. A. Backman https://doi.org/10.1094/PD-75-0347
  18. methods of soil analysis, Part 2 : Chemical and microbiological properties(2nd ed.) Cultural methods for soil microorganisms Wollum, A. G.
  19. Biochem. Biophys. Res. Comm. v.226 Production of hydroxy fatty acid (10-Hydroxy-12(Z)-octadecenoic acid) by Lactobacillus plantarum from linoleic acid and its cardiac effects to guinea pig papillary muscles Yamada, Y.;H. Uemura;H. Nakaya;K. Sakata;T. Takatori;M. Nagao;H. Iwase;K. Iwadate https://doi.org/10.1006/bbrc.1996.1366
  20. Kor. Soc. Poul. Sci. v.25 Effect of feeding probiotics on performance and Intestinal microflora of broiler chicks You, K. S.;H. S. Park
  21. Kor. J. Appl. Microbiol. Biotechnol. v.21 Crude oil-degrading properties of psychrotrophic bacterium Acinetobacter calcoaceticus A1-1 Yun, H. J.;S. J. Kim;K. H. Min

Cited by

  1. Effects of Organic Materials, Chitosan, Wood Vinegar, and EM Active Solution on Soil Microbial and Growth in Chinese Cabbage vol.21, pp.4, 2011, https://doi.org/10.5352/JLS.2011.21.4.584
  2. Effect of Bacillus subtilis S37-2 on Microorganisms in Soil and Growth of Lettuce (Lactuca sativa) vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.621