Surface Immobilizntion on Silica of Endoxylanase Produced from Recombinant Bacillus subtilis

  • Kang, Su-Cheol (Department of Bioscience and Biotechnology, Sejong University) ;
  • Kim, Hye-Jeong (Department of Bioscience and Biotechnology, Sejong University) ;
  • Nam, Soo-Wan (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Oh, Deok-Kun (Department of Biotechnology and Bioengineering, Dong-Eui University)
  • Published : 2002.10.01

Abstract

The plasmid, pJHKJ4, containing the endoxylanase gene, was introduced into Bacillus subtilis DB 104. The recombinant cells produced 587 unit/ml of endoxylanase at 33 h. The endoxylanase was immobilized covalently on the surface of silica fur effective xylan hydrolysis. The activities of the immobilized and free endoxylanases were optimal at pH 6.5 and 10 mM $MnSO_4$. The optimal temperature of the immobilized endoxylanase was $60^{\circ}C$, whereas that of the free endoxylanase was $65^{\circ}C$. Under these optimal conditions, the activity of the immobilized endoxylanase was 1.7 times higher than that of the fee endoxylanase. From microscope photographs, the immobilized endoxylanase was found to be bounded and evenly distributed on the surface of silica, a nonporous solid support. The enzyme kinetics between the immobilized and free endoxylanases was estimated to be uncompetitive, when plotting double-reciprocal plots against xylan concentrations and endoxylanase activities. These results suggest that the higher activity of the immobilized endoxylanase may be due to increased formation of enzyme-substrate complex, because of the easy accessibility of the immobilized enzyme to the polysaccharide-xylan as a high molecular weight substrate.

Keywords

References

  1. World J. Microbiol. Biotechnol. v.8 Xylan structure, microbial xylanases, and their mode of actoin. Bastawde, K. B. https://doi.org/10.1007/BF01198746
  2. Trends Biotechnol. v.3 Microbial xylanolytic systems. Biely, P. https://doi.org/10.1016/0167-7799(85)90004-6
  3. Eur. J. Biochem. v.119 Sunstrate binding site of endo-1,4-β-xylanase of the yeast Cryptococcus albidus. Biely, P.;Z. Kratky;M. Vrsanska. https://doi.org/10.1111/j.1432-1033.1981.tb05644.x
  4. Anal. Biochem. v.72 A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Bradford, M. M. https://doi.org/10.1016/0003-2697(76)90527-3
  5. J. Microbiol. Biotechnol. v.8 Catabolite repression of the Bacillus stearothermophilus β-xylosidase gene (xylA) in Bacillus subtilis. Cho, S. G.;Y. J. Choi.
  6. J. Microbiol. Biotechnol. v.8 Characterization of the xaiF gene encoding a novel xylanase-activity-increasing facter, XaiF. Cho, S. G.;Y. J. Choi.
  7. J. Microbiol. Biotechnol. v.8 Molecular cloning and the nucleotide sepuence of a Bacillus sp. KK-1 β-xylosidase gene. Chun, Y. C.;K. H. Jung;J. C. Lee;S. H. Park.;H. K. Chung;K. H. Yoon.
  8. Mol. Gen. Genet. v.167 Characterization of plasmid transformation in Bacillus subtilis: kinetic properties and the effect of DNA conformation. Contente, S.;D. Dubnau. https://doi.org/10.1007/BF00267416
  9. Eur. J. Biochem. v.187 Purification and properties of endo-1,4-xylanases excreted by a hydrolytic thermophilic abaerobe, Clostridium thermolacticum. Debeire, P.;B. Strecker;M. Vignon. https://doi.org/10.1111/j.1432-1033.1990.tb15339.x
  10. Carbohydr. Res. v.39 Purification, properties and mode of action of hemicellulaseⅠ produced by Ceratocystis paradoxa. Dekker, R. F. H.;G. N. Richards. https://doi.org/10.1016/S0008-6215(00)82642-7
  11. Carbohydr. Res. v.39 Purification, properties and mode of action of of hemicellulase Ⅱ produced by Ceratocystis paradoxa. Dekker, R. F. H.;G. N. Richards.
  12. Biotechnol. Prog. v.13 Immobilization of xylanase in chitosan-xanthan hydrogelas. Dumitri, S.;E. Chornet. https://doi.org/10.1021/bp970059i
  13. Biosci. Biotechnol. Biochem. v.57 Purification and properties of 1,4-xylanases 2 and 3 from Aeromonas caviae W-61. Dung, N.V.;S. Vetayasuporn;Y. Kamio;N. Abe;J. Kaneko;K. Izaki. https://doi.org/10.1271/bbb.57.1708
  14. Industrial Enzymology: The Application of Enzymes in Industry. Godfrey, T.;S. West.
  15. J. Microbiol. Biotechnol. v.11 no.236 Carbon catabolite repression (CCR) of expression of the xylanaseA gene of Bacillus stearothermophilus Ha, G. S.;I. D. Choi;Y. J. Choi.
  16. Appl. Microbiol. Biotechnol. v.50 High-level expression of an endoxylanase gene from Bacillus sp. in Bacillus subtilis DB104 for the production of xylobiose from xylan. Jeong, K. J.;I. Y. Park;M. S. Kim;S. C. Kim. https://doi.org/10.1007/s002530051264
  17. Enzyme Microb. Technol. v.22 Molecular cloning and characterization of an endoxylanase gene from Bacillus sp. in Escherichia coli. Jeong, K. J.;P. C. Lee;I. Y. Park;M. S. Kim;S. C. Kim. https://doi.org/10.1016/S0141-0229(97)00256-1
  18. J. Microbiol. Biotechnol. v.8 Purification and characterization of the Bacillus sp. KK-1 β-xylosidase gene from a recombinant Escherichia coli. Jung, K. H.;Y. C. Chun;J. C. Lee;S. H. Park;H. K. Chung;K. H. Yoon.
  19. J. Bacteriol. v.160 Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral protease. Kawamura, F.;R. H. Doi.
  20. J. Microbiol. Biotechnol. v.10 Constitutive overexpression of the endoxylanase gene in Bacillus subtilis. Kim, J. H.;J. H. Kim;S. C. Kim;S. W. Nam.
  21. J. Microbiol. Biotechnol. v.7 Characterization of an emdoxylanase produced by an isolated strain of Bacillus sp. Lee, J. J.;K. S. Hahm;K. Y. Lee;S. T. Lee
  22. Enzyme Microbiol. Technol. v.27 Relationships between activities of xylanases and xylan structures. Li, K.;P. Azadi;R. Collins;J. Tolan;J. S. Kim;K. E. L. Eriksson. https://doi.org/10.1016/S0141-0229(00)00190-3
  23. J. Microbiol. Biotechnol. v.11 Asparagine residue at position 71 is responsible for alkalitolerance of the xylanase from Bacillus pumius A-30. Liu, X. M.;M. Qi;J. Q. Lin;Z. H. Wu;Y. B. Qu.
  24. Carbohydr. Res. v.173 Kinetics and subsite mapping of β-D-xylobiose and D-xylose producing Aspergillus niger endo-β-1,4-D-xylanase. Meagher, M. m.;B. Y. Tao;J. M. Chow;P. J. Reilly. https://doi.org/10.1016/S0008-6215(00)90823-1
  25. Anal. Chem. v.31 Use of sinitrosalicylic acid reagent for determination reducing sugar. Miller, G. L. https://doi.org/10.1021/ac60147a030
  26. J. Mol. Catal. B. Enz. v.2 Covalent immobilization of pure lipases A and B from Candida rugosa. Moreno, J. M.;M. K. Hernaiz;J. M. Sanchez-Montero;J. V. Sinisterra;M. T. Bustos;M. E. Sanchez;J. F. Bello. https://doi.org/10.1016/S1381-1177(96)00029-X
  27. J. Biol. Chem. v.240 The release of enzymes from E. coli by osmotic shock and during the formation of spheroplast. Neu, H. C.;L. A. Heppel.
  28. Biotechnol. Lett. v.6 Properties and applications of Penicillium funiculosm cellulase immobilizee on a soluble polymer. Rao, M.;C. Mishra. https://doi.org/10.1007/BF00129062
  29. Basic. Life Sci. v.18 Xylanase: Structure and function. Reilly, P. J.
  30. Enzyme Microb. Technol. v.7 Immobilization of celloulose and xylanases complexed from Aspergillus terreus F-418 on controlled porosity glasses. Rogalski, J.;J. Szczodrak;A. Dawidowicz;Z. Ilczuk;A. Leonowicz. https://doi.org/10.1016/0141-0229(85)90129-2
  31. Enzyme Microb. Technol. v.27 Simultaneous purification and immobilizatioin of Aspergillus niger xylanase on the reversibly soluble polymer Eudragit™ Sardar M.;I. Roy;M. N. Gupta. https://doi.org/10.1016/S0141-0229(00)00257-X
  32. Biotechnol. Bioeng. v.29 Immobilization of cellulolytic and hemicellulotytic enzymes on inorganic supports. Shimizu, K.;M. Ishihara. https://doi.org/10.1002/bit.260290214
  33. Cell. Chem. Tehcnol. v.26 Upon hydrolysis of some vegetable polysaccharides by immobilized enzyme preparations. Simionescu, C.;C. Marinescu;R. Chirica;S. Maxim;V. Pora.
  34. Prikl. Biokhem. Mikrobiol. v.21 Immobilization of a hemicellulase complex from Aspergillus niger in benzoquonone silochrome. Tavobilov, I. M.;N. A. Rodinova;D. Y. Balcere;A. K. Aran;A. M. Bezborodov.
  35. Enzymes for Pulp and Paper Processing Survey of mill usage of xylanase Tolan, J.S.;D. Olson;R. E. Dines.;T. W. Jeffries(ed.);L. Viikari(ed.)
  36. FRMS Microbiol. Rev. v.104 Molecular biology of xylan degradation. Tomson, J. A.
  37. Comp. Biochem. Physiol. v.127 Pufirication and characterization of two endo-1,4-xylanases from Antarctic krill, Euphausia superba Dana. Turkiewicz, M.;H. Kalinowska;M. Zielinska;S. Bielecki. https://doi.org/10.1016/S0305-0491(00)00268-6
  38. Biotechnol. Appl. Biochem. v.21 Immobilization of Aspergillus niger xylanase on magnetic latex beads. Tyagi, R.;M. N. Gupta.
  39. Microbiol. Rev. v.52 Multiplicity of β-1,4-xylanase in microorganism: Functions and applications. Wong, K. K. Y.;U. L. Larry;J. N. Saddler.