Molecular Characteristics of Pseudomonas rhodesiae Strain KK1 in Response to Phenanthrene

  • Kahng, Hyung-Yeel (Department of Environmental Education, Sunchon National University) ;
  • Nam, Kyoung-Phile (Research Division of Seoul National University/Hanyang University for Social Infrastructure and Construction Technology, School of Civil, Urban & Geosystem Engineering, Seoul National University)
  • Published : 2002.10.01

Abstract

Radiorespirometric analysis revealed that Pseudomonas sp. strain KKI isolated from a soil contaminated with petroleum hydrocarbons was able to catabolize polycyclic aromatic hydrocarbons such as phenanthrene and naphthalene. The rate and extent of phenanthrene mineralization was markedly enhanced when the cells were pregrown on either naphthalene or phenanthrene, compared to the cells grown on universal carbon sources (i.e., TSA medium). Deduced amino acid sequence of the Rieske-type iron-sulfur center of a putative phenanthrene dioxygenase (PhnAl) obtained from the strain KKI shared significant homology with DxnAl (dioxin dioxygenase) from Spingomonas sp. RW1, BphA1b (biphenyl dioxygenase) from Spingomonas aromaticivorans F199, and PhnAc (phenanthrene diokygenase) from Burkholderia sp. RP007 or Alcaligenes faecalis AFK2. Northern hybridization using the dioxygenase gene fragment cloned from KKI showed that the expression of the putative phn dioxygenase gene reached the highest level in cells grown in the minimal medium containing phenanthrene and $KNO_3$, and the expression of the phn gene was repressed in cells grown with glucose. In addition to the metabolic change, phospholipid ester-linked fatty acids (PLFA) analysis revealed that the total cellular fatty acid composition of KKI was significantly changed in response to phenanthrene. Fatty acids such as 14:0, 16:0 3OH, 17:0 cyclo, 18:1$\omega$7c, 19:0 cyclo increased in phenanthrene-exposed cells, while fatty acids such as 10:0 3OH, 12:0, 12:0 2OH, 12:0 3OH, 16:1$\omega$7c, 15:0 iso 2OH, 16:0, 18:1$\omega$6c, 18:0 decreased.

Keywords

References

  1. Eur. J. Biochem. v.247 Genetic and biochemical characterization of the broad spectrum chlorobenzene dioxygenase from Burkholderia sp. strain PS12-dechlorination of 1,2,4,5-tetrachlorobenzene Beil, S.;B. Happe;K. N. Timmis;D. H. Pieper https://doi.org/10.1111/j.1432-1033.1997.00190.x
  2. Gene v.236 Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10 Boshc, R.;E. Garcia-Valdes;E. R. B. Moore https://doi.org/10.1016/S0378-1119(99)00241-3
  3. Appl. Environ. Microbiol. v.63 New metabolites in the degradation of fluorene by Arthrobacter sp. Strain F101 Casellas, M.;M. Grifoll;J. M. Bayona;A. M. Solanas
  4. Biotechnol. v.4 Biodegradation of polycyclic aromatic hydrocarbons Cerniglia, C. E.
  5. Appl. Environ. Microbiol. v.60 Metabolism of benz[a]anthracene by the filamentous fungus Cummminghamella elegans Cerniglia, C. E.;D. T. Gibson;R. H. Dodge
  6. Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment Cerniglia, C. E.;M. A. Heitkamp;U. Varanasi(ed.)
  7. Ph. D. Thesis Molecular analysis of polycyclic aromatic hydrocarbon degradation by Mycobacterium sp. strain PYO1 Cigolini, J. F.
  8. Appl. Environ. Microbiol. v.67 Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants Daane, L. L.;I. Harjono;G. J. Zylstra;M. M. Haggblom https://doi.org/10.1128/AEM.67.6.2683-2691.2001
  9. J. Bacteriol. v.183 Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B Eaton, R. W. https://doi.org/10.1128/JB.183.12.3689-3703.2001
  10. Appl. Environ. Microbiol. v.62 Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39 Goyal, . K.;G. J. Zylstra
  11. J. Bacteriol. v.175 Characterization of 2,2',3-trihydroxybiphenyl dioxygenase, an extradiol dioxygenase from the dibenzofuran-and dibenzo-p-dioxin-degrading bacterium Sphingomonas sp. strain RW1 Happe, B.;L. D. Eletis;H. Poth;R. Hedderich;K. N. Timmis https://doi.org/10.1128/jb.175.22.7313-7320.1993
  12. Arch. Microbiol. v.173 Properties of the trihydroxytoluene oxygenase from Burkholderia cepacia R34: An extradiol dioxygenase from the 2,4-dinitrotoluene pathway Johnson, G. R.;R. K. Jain;J. C. Spain https://doi.org/10.1007/s002039900111
  13. J. Microbiol. v.60 Cellular responses of Pseudomonas sp. KK1 to two-ring polycyclic aromatic hydrocarbon, naphthalene Kahng, H.-Y.
  14. J. Microbiol. Biotechnol. v.10 Physiological adn phylogenetic analysis of Burkholderia sp. HY1 capable of aniline degradation Kahng, H.-Y.;J. J. Kukor;K.-H. Oh
  15. Appl. Environ. Microbiol. v.67 Genetic and functional analysis of the tbc operons for catabolism of alkyl-and chloroaromatic compounds in Burkholderia sp. strain JS150 Kahng, H.-Y.;J. C. Malinverni;M. M. Majko;J. J. Kukor https://doi.org/10.1128/AEM.67.10.4805-4816.2001
  16. J. Microbiol. Biotechnol. v.12 FAME analysis to monitor impact of organic matter on soil bacterial populations Kim, J.-S.;J.-B. Joo;H.-Y. Weon;C. S. Kang;S. K. Lee;C. S. Yahng
  17. Biosci. Biotechnol. Biochem. v.65 Multiplicity of aromatic ring hydroxylation dioxygenase genes in a strong PCB degrader, Phodococcus sp. strain RHA1 demonstrated by denaturing gradient gel electrophoresis Kitagawa, W.;A. Suzuki;T. Hoaki;E. Masai;M. Fukuda https://doi.org/10.1271/bbb.65.1907
  18. J. Bacteriol. v.181 The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism Laurie, A. D.;G. Lloyd-Jones
  19. Appl. Environ. Microbiol. v.61 Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. Strain RHA1 Masai, E.;A. Yamada;J. M. Healy;T. Hatta;K. Kimbara;M. Fukuda;K. Yano
  20. J. Microbiol. Biotechnol. v.12 Linkage between biodegradation of polycyclic aromatic hydrocarbons and phospholipid profiles in soil isolates Nam, K.;H. S. Moon;J. Y> Kim;J. J. Kukor
  21. Appl. Environ. Microbiol. v.62 Cell envelope changes in solvent-sensitive Pseudomonas putida strain following exposure to o-xylvent Pinkart, H. C.;J. W. Wolfram;R. Rogers;D. C. White
  22. J. Biol. Chem. v.239 Studies on the electron transfer system. LⅧ. Properties of a new oxidation-reduction component of the respiratory chain as studied electron paramagentic resonance spectroscopy Rieske, J. S.;R. E. Hanse;W. S. Zaugg
  23. J. Bacteriol. v.181 Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans catabolic plasmid from Sphingomonas aromaticivorans F199 Romine, M. F.;L. C. Stillwell;K. K. Wong;S. J. Thurston;E. C. Sisk;C. Sensen;T. Gassterland;J. K. Fredrickson;J. D. Saffer
  24. J. Bacteriol. v.182 A novel phenanathrene dioxygenase from Nocardioides sp. strain KP7: Expression in Escherichia coli Saito, A.;T. Iwabuchi;S. Harayama
  25. Hazard Assessment of Chemicals: Current Developments Azaarenes: sources, distribution, environmental impact, and health effects Santodonato, J.;P. H. Howard;J. Saxena(ed.);F. Fisher(ed.)
  26. Handbook on Biodegradation and Biological Treatment of Hazardous Organic Compounds van Agteren, M. H.;S. Keuning;D. B. Janssen
  27. Appl. Environ. Microbiol. v.64 Evolution of a pathway for chlorobenzene metabolism leads to natural arrenuation in contaminated groundwater van der Meer, J. R.;C. Werlen;S. F. Nishino;J. C. Spain
  28. Appl. Environ. Microbiol. v.67 Molecular cloning, nucleotide sequence, and expression ofgenes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1 Wang, R. F.;A. A. Khan;W. W. Cao;D. R. Doerge;D. Wennerstrom;C. E. Cerniglia https://doi.org/10.1128/AEM.67.8.3577-3585.2001
  29. Appl. Environ. Microbiol. v.57 Effect of benzoic acid on glycolytic metabolite levels and intracellular pH in Saccharomyces cerevisiae Warth. A. D.
  30. Appl. Environ. Microbiol. v.58 Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites Widada, J.;H. Niijiri;K. Kasuga;T. Yoshida;H. Habe;T. Omori