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Abstract

The bilinear formulation proposed earlier by Peters and Izadpanah to develop finite
elements in time to solve undamped linear systems, is extended (and found to be readily
amenable) to develop time finite elements to obtain transient responses of both linear and
nonlinear, and damped and undamped systems. The formulation is used in the h-, p- and
hp-versions. The resulting linear and nonlinear algebraic equations are differentiated to obtain
the first- and second-order sensitivities of the transient response with respect to various
system parameters. The present developments were tested on a series of linear and nonlinear
examples and were found to yield, when compared with results obtained using other methods,
excellent results for both the transient response and its sensitivity to system parameters.
Mostly, the results were obtained using the Legendre polynomials as basls functions, though,
in some cases other orthogonal polynomials namely, the Hermite, the Chebyshev, and
integrated Legendre polynomials were also employed (but to no great advantage). A key
advantage of the time finite element method, and the one often overlooked in its past
applications, is the ease in which the sensitivity of the transient response with respect to
various system parameters can be obtained. The results of sensitivity analysis can be used
for approximate schemes for efficient solution of design optimization problems. Also, the results
can be applied to gradient-based parameter identification schemes.

Key words : Finite Elements in Time, Bilinear Formulation, First- and Second-Order
Sensitivity, Orthogonal Polynomials

Introduction

The time finite element method, in which the time is discretized in a number of finite elements
and the response history over each element is expressed in terms of basis functions in the time
co-ordinate, has attracted a considerable attention in the past. In recent years, the method has found
increasing popularity, especially with researchers involved with studying transient response and dynamic
stability of periodic systems, such as the aeroelastic stability of helicopter rotor blades (Borri et
al. 1985; Peters and Izadpanah 1988; Achar and Gaonkar 1993) and the multi-rigid body dynamics
(Borri et al. 1990, 1991; Mello et al. 1990; Atluri and Cazzani 1995). Based on these and many
other efforts (to name a few: Pian and O’Brien 1957; Gurtin 1964a, 1964b; Sandhu and Pister
1972; Tonti 1972; Atluri 1973; Herrera and Bielak 1974; Bailey 1975a, 1975b, 1976a, 1976b;
Reddy 1975, 1976; Kim and Cho 1997) dedicated to develop appropriate variational framework
for generating approximate solutions in space and time domain, it appears that the time finite element
method has emerged as a viable approach for studying the transient response of systems (i.e. for
solving initial value problems) also. A brief review of the key development leading to the current
state of the finite element method as applied to initial value problems is given below. The time
finite element method was first introduced by Argyris and Scharpf (1969) who employed Hermite
cubic interpolation polynomials (akin to the beam finite element) to express the response over each
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time finite element. The response and the velocity at any given instant were thus obtained in terms
of the displacement and the velocity at two “pivotal points”, namely the start and the end of the
time element. The method, based on the Hamilton’s principle, was applied to a single-degree-of-freedom
system but no numerical examples were considered. A generalization of the formulation allowing
for an arbitrary number (p) of pivotal points and each pivotal point having an arbitrary number
of time derivatives (a) of the response, was also given (but, once again, without any numerical
results). Fried (1969), using an ‘Extended Hamilton’s Principle’, applied this approach to study the
transient response of a damped system (nonconservative systems) and transient heat conduction in
a slab whose surface was subjected to a harmonically varying temperature. Fried used a step by
step approach in which the final conditions (for displacement and velocity) for one time element
can be considered as initial conditions for the next time finite element, as in any time-marching
technique. This was done to avoid storing and working with large matrices. Zienkiewicz and Parekh
(1970), also working with problems in heat conduction, used a time finite element approach that
was based on Galerkin procedure of obtaining weighted residual equations over a time interval.
On integration, the resulting equation was given in terms of the initial and final states.

An important development in the evolution of time finite element method was a series of
papers by Bailey (1975a, 1975b, 1976a, 1976b) in which the author pointed out the need for applying
Hamilton’s law of varying action, briefly, Hamilton’s law, not Hamilton’s principle, in solving problems
in elastodynamics. Using Hamilton’s law, Bailey used the classical Ritz method, with simple polynomials
as the basis functions, to study elastodynamic response of beams. Baruch and Riff (1982, 1984a,
1984b), and Borri et al. (1985) developed time finite element using Hamilton’s law. Baruch and
Riff (1982) noted that one can use six different formulations (each having different combinations
of initial and final constraints) of the Hamilton’s law for each degree-of-freedom. Borri et al. (1990,
1991), Mello et al. (1990) and Atluri and Cazzani (1995) applied the primal and mixed form of
Hamilton’s law to develop piecewise Lagrange-type time finite elements to solve nonlinear equations
of multi-rigid body dynamics.

Wu (1977) recognizing the limitations of constrained variational principles like the extended
Hamilton’s principle to nonconservative forces, presented an unconstrained variational principle in
which the constraints were applied using the well known technique of Lagrange multipliers. Simkins
(1978) presented a procedure, consisting of introducing all boundary and essential conditions into
the ‘variational statement’ as natural boundary conditions, making the variational statement suitable
for obtaining approximate solutions for initial and boundary value problems. It was pointed out
that the proposed procedure when applied to the Euler equations leads to a modified Hamilton’s
principle as was given by Tiersten (1968). In a subsequent paper, Simkins (1981) employed this
variational statement to develop finite element in time.

Commenting on the paper by Simkins (1978), Smith (1979) noted that what the former calls
a variational statement for solving initial value problems is really an application of the weighted
residual method to those problems. Building on this observation, Peters and Izadpanah (1988) offered
a bilinear formulation of elastodynamics as an alternative source to develop approximate methods
to solve these problems. As was ealier done by Wu (1977), Peters and Izadpanah (1988) employed
Lagrange multiplier method to account for various end constraints. More specific choice and use
of Lagrange multiplier to satisfy the various constraint conditions can be seen in the papers by
Atluri (1973), Borri et al. (1990, 1991), Mello et al. (1990) and Atluri and Cazzani (1995). A
distinct advantage of this augmented, bilinear formulation is the natural convergence of the end
conditions. Also, the method can be applied as a step by step procedure, thereby avoiding the need
for dealing with large matrices. To achieve this, the natural convergence of the end constraints
is very important as the end conditions of one segment are used as initial conditions for the next
segment. Using the proposed augmented bilinear formulation and the h-, p-, and the hp-versions,
Peters and Izadpanah (1988) solved a number of examples related to dynamic response of linear
systems.

One of the objectives of the present paper is to evaluate the performance of the augmented
bilinear formulation of elastodynamics in determining the transient response of damped
(nonconservative) linear and nonlinear systems. Whenever possible, the numerical results are compared



68 / 2002. 11. Vol.3 No.1 KSTAM, Member of IUTAM

with existing results or those obtained using Runge-Kutta fourth-order method. For all the cases
studied, the results are obtained using Legendre polynomials as basis functions. The results were
also obtained using other polynomials, namely: Hermite, integrated Legendre, and Chebyshev
polynomials as basis functions, but without any significant improvement in either accuracy or efficiency.
The results obtained by using these polynomials are thus not being presented.

In addition to the transient response calculations, the time finite element approach is natural
for obtaining the sensitivity of the transient response of linear and nonlinear and damped and undamped
systems, as the sensitivities can be easily obtained by performing direct differentiation of the nonlinear
algebraic equations resulting from the application of the proposed finite element method. The study
of the response sensitivities of the dynamic systems are important for performing system identification
and evaluating the effect of design changes on the dynamic response of the system. Additionally
it is easier to determine the character of the motion of the dynamic system from the critical stability
viewpoint by observing the sensitivity coefficients. A number of approaches are currently being
used for obtaining sensitivity of the transient response; namely: direct differentiation of the goveming
differential equation, adjoint variable method, finite difference method, Green’s function method,
and Fourier amplitude sensitivity method. A review of the existing methods to obtain sensitivity
of the transient response is given by Adelman and Haftka (1986) and Haftka and Adelman (1989).
In a recent paper, Wang and Lu (1993) have presented a procedure that uses discrete Fourier transform
to obtain sensitivity of the transient response of the linear systems. Among the current methods
the direct differentiation method is straight forward and is quite efficient when the number of design
variables is small. The proposed time finite element method based approach can be considered to
be similar to the direct differentiation approach. The key difference being that in the proposed approach
differentiation of the algebraic equations and not that of the original differential equations is performed.
The present approach is thus simpler than the direct differentiation approach. For some applications,
expressions for second-order sensitivity using the proposed method are also obtained for nonlinear
structural systems and the results are compared with the ones obtained using the finite-difference
method. Although a number of approaches are currently being used for obtaining first-order sensitivity
of the transient response, little research progress has been made towards obtaining higher order
sensitivity. Second-order sensitivity derivatives were obtained by Haug (1981) and by Haftka (1982),
using the adjoint variable method for the structural systems, and by Bindolino and Mantegazza
(1987), using a direct differentiation method for an aeroelastic response problem. Also, Van Belle
(1982) derived expressions for second-order sensitivities using flexibility approach rather than the
stiffness approach. Part of the motivation for second-order sensitivity derivatives is that they estimate
nonlinear sensitivity effects including interactions between variables.

The second objective of this paper is to study the performance of the time finite element
in obtaining the sensitivity of the transient response of various linear and nonlinear and damped
and undamped systems. The results obtained from the present approach are compared with those
obtained with the cenirat finite difference approach, using step sizes obtained from a convergence
study. No such convergence study is needed when the present approach, employing direct differentiation
of the algebraic equations resulting from the time finite element method, is employed.

Mathematical formulation
Transient response of linear systems
Consider a simple one-degree-of-freedom spring-mass-damper system given as

Mu(D+ Ci( )+ Ku(D=F() Ty t =T,
with initial conditions «(0) =z, u(0)=g#,

Here M, C and K are respectively the mass, damping and stiffness coefficients, and F()
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is the externally applied dynamic load. Multiplying Eq. (1) with a test function (or weight function)
o(?) and integrating with respect to time gives

T,
[, v+ (et Cic+ Ku—F)at=0
Integrating the first term in Eq. (2) by parts, we get
Ty 7 . .
[Mou] 7+ fr (Kvu+ Cvu— Mvu— vF)dt=10

For the correct formulation of Eq. (3), we need to investigate the possible constraints on
the initial and end conditions of the system. Many previous works (Baruch and Riff (1982)) offered
various ideas. Peters and Izadpanah (1988) suggested that «(T) in Eq. (3) has to be zero to eliminate

the unknown final momentum Mu(7T,) but «(#) must not be allowed to vanish at 7} to insure

a natural convergence of the initial momentam Mi(T,). The variational equation (Bailey

1975a,1975b,1976a, 1976b; Hitzl and Levinson 1979; Simkins 1981; Riff and Baruch 1984a,1984b;
Borri et al. 1985, 1990, 1991; Mello et al. 1990) based on Hamilton’s law gives the following
form

T, T,
. ’ _9T T
afn(r Vdt+ fr. Qasadt—-5L a1 %=0

and included the displacement variations at T, and T, Baruch and Riff (1982) demonstrated
that Hamilton’s law with a constraint of ds(7,)=0 showed the best convergence among the 6"
correct formulations. The trial function #(#) can be expressed as

()= ﬁlq,d»,(t)

=

where ¢(#) are the basis functions in the form of Legendre polynomials, though same results

were also obtained using Hermite, Chebyshev, and integrated Legendre polynomials. Substituting
Eq. (5) into Eq. (3), we get a equation of the form (Zienkiewicz and wood 1987)

N T T
Z:lq,( [ gop Cop—Mvd)at)= | . Fodt= Mo T)id T)+ MA T T,)

Let o(f)=68g4{f, 1=i<N, where ¢(f) are the admissible functions chosen from the same
set for trial functions. The test functions may or may not be same as the trial functions. Then
for each ¢(#), Eq. (6) becomes

Bg=a
where

T,
B,=| . (K0$;+ Chd;— My$)at
o= MOA T Ty~ MATY il Tp+ [ Fodt

We impose the initial condition, «(T,)=1u, in the form of a constraint. This is done by
augmenting Eq. (7) with an additional eq. (8).
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Uy = 1231 29 Ty)
UT)=08q9(T)=0

The second constraint Eq. (9) can be included by using the method of Lagrange multiplier,
by multiplying an arbitrary Lagrange multiplier A to Eq. (9) and adding the product to the left
hand side of Eq. (7).

N
le,ﬂ,+ AM¢,( Tf) = a:
where
. __ ' - T
ai=Mp( T T+ [ 'Fodr

The M¢{T)u(T,) term in q; has been eliminated due to the constraint Eq. (9). With this
constraint on the test function the bilinear formulation can be proved to be convergent and the
detail will be shown in appendix. Equations (7) and (10) can be written in the matrix form

(M¢..é T,)}](g,.) =( a’ )

[ B
CHATy) w(Ty)

where
T
B; = [_ (Ko +Co.di— Mb.d)at

T,
a; = MUATY U T + [ 'Foat

and 7, j are row and column index, respectively. In the case of multiple elements, u(#)
and A at end point for a particular element should be used as the initial conditions for the following
element.

Transient Response Sensitivity of Linear Systems

The transient sensitivity calculation is equivalent to the mathematical problem of obtaining
the derivatives of the solutions with respect to the independent variables. The straightforward
differentiation of Eq. (11) with respect to the design parameter p,, allows us to write the following

sensitivity equation.

9q; B (oM da’

[ B (M(/’,( T/) }] a_D: + aﬁ[, { apk ‘/’,( T/)) ( 3,) = azk
AT 0 oA 0 du(Ty)

v, b,

where

dB; T 3K aC oM

R I R R R
da; _ oM . E0)
apk = aﬁ/, ‘/’.( Tg)u( To)+M¢,‘( To) 3P;,

For the first element. we have

®
®

(10

an

(12)
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da;

oM :
e $LT) (T

Transient Response Sensitivity of Nonlinear Systems

While the solution of a linear equation system can be accomplished without difficulty in a
manner described above, this is not possible for nonlinear systems. Analytical procedures for the
treatment of nonlinear differential equations are difficult and require extensive mathematical study.
The differential equation describing a nonlinear oscillatory system over a given length of time,

To< t =T, may have a general form

olu, u, 4, t,p)=0

where g may be nonlinear functions of «(#) and i«#). The bilinear formulation of Eq. (13)
gives us a general form

2q,p)=0

where p,, k=1,2,...,K are the K system parameters and the vector ¢ denotes the generalized
coordinates. Eq. (14), at times, may also be written as

g=a— Bqg=0

where a is the load vector and B is the nonlinear ‘‘stiffness” matrix and a function of
generalized coordinates g¢. The most obvious and direct way to solve Eq. (14) is by an iterative
method (Burden and Faires 1993). The iteration is terminated when an ’error’, i.e.

e=gq (») _ q (2—~1)
becomes sufficiently small. Usually some norm of the error is determined and iteration continues
until this norm is sufficiently small. In this paper, the stopping criterion is to iterate until

e~ 4o,

|| = € (=5.0<10"%)

e

Transient Response Sensitivity of Nonlinear Systems: First- & Second-Order Sensitivity
Derivatives

The sensitivity of the transient response of a nonlinear system can be obtained by taking
the derivative of both sides of Eq. (14) with respect to p,. This gives

98;  9%; 94; _

dpy  3q; 9b,

Note that from Eq. (18) it is clear that the design sensitivity equation is linear even though
the analysis problem is nonlinear. (dz;/dg) is called Jacobian or the ‘‘tangent” stiffness matrix.
Since the vector of generalized coordinates ¢; is already available from the transient response analysis,
the first derivatives of the generalized coordinates (dq;/dp,) can be easily calculated by solving

(13)

(14)

(15)

(16)

am

(18)
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Eq. (18).

p— —-l —
-@i:_[ ag,.] og;
apk aq, apk

In matrix form, the sensitivity equation can be obtained by taking the derivatives of Eq. (15)
with respect to p,.

da Y 0B

da; N N B.. )aqm
- B Bl B Eeke) S0 @
This equation may be written symbolically as
b= (5 B &5 )
94 )} == =+
(| g2+ [ 52 ko= 5| £ £, o= an) 55 ay

This reduces to

izl g )+ [ 5 o= 55

N
B, =B+ 3

where

1 34, Im

Again, straightforward differentiation of Eq. (20) with respect to p, yields

%a; —f: 3B, - N( N, 3B aq,,) _ & 9By dq;
39;,391 =1 apkaﬂl AW ap[ = dp, Op,

3B dq; N( 8B aq,,) 2
=1 aD, apk =\ a=1 aq,, ap ap,, =1 i aﬁkapl

Rearranging and simplifying Eq. (24) yields

d%a; B, N( aB; & 3B, \Jdg;
al’kaﬂl Jz——-: ap 31’1 Z by + nz=:l dp, 0q; I 92,
[ 0B | & aB‘ da,\ dq; & d%q;
p 1( a0, T 21 2a, vl a0~ 2B a8, "

Presenting Eq. (25) in a matrix form yields

[E'f][ E7A ap,}+[ ][ - }+[Bm] ap,. [ TR ]{"’ [ ETH 31’:}

where
. _ aB N 2B in
B ap,, 5, nE= aﬁkaq,‘ In
w _ 0B N gB'. dq
By =5 + 2.3, o,

Here q;, (3q,/3p,), and (dq;/dp) are known values since they were calculated in the previous
analyses.

(19)

(22

23

249

25)

(26)
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Numerical Examples
Nonlinear Softening System
Consider a softening spring-mass system (Chen et al. 1993) without viscous damping

u(H+100tanh #(H =0
with initial conditions #(0)=0.0  #(0)=25.0

The domain with a range of time 0< ¢ <5 is divided into twenty five elements of equal
time steps of Jt=0.2 and, unless mentioned otherwise, Legendre polynomials of the sixth degree
are used as basis functions in the calculation. Fig. 1 presents the responses of the undamped case.

? T T T x0

~=— Fhlesdeneitsintine(s=023

H me(2=0
== R Kuttfourtho re: 2 i =—= Covird dllerave. At=Q
2T Rumskundourtsorarsppra ﬁ-ul.j _J b i g

.
| /A

6 + -150 +
'] 1 2 3 4 5 [ 2 3 5
Time(s ec) Time({sec)
Fig. 1 Transient response of a nonlinear Fig. 2 Sensitivity of the response with
system without damping respect to mass

For comparison, the Runge-Kutta fourth-order method (Burden and Faires 1993) for the
second-order system is used to approximate the solutions using 4¢=0.1 and 0.01. To verify the
results for the response sensitivities, the second-order-central difference approximation is used to
calculate the response sensitivities with respect to the design parameters. Given a function «(,),
the central difference approximations (du/4p,) to the sensitivity (d%/dp,) of « with respect to
a design parameter p, is given as

du  Wogt+ap)— ulpy— by
Apk - dek

It is possible to employ higher-order finite difference approximations, but they are rarely used
because of the high computational cost. Fig. 2 shows the sensitivities with respect to mass as obtained
using the present approach and the central difference approach. The values of the central difference
approximation with 4¢t=0.01 and 0.005. are presented along with the result of the proposed method.

Fig. 3 presents the effect of the step size, 4p,, on the response sensitivity. As can be seen

from this Fig., as expected (Haftka and Gurdal 1992), step size plays an important role in the calculations

@n

28
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of the response sensitivity. A step size of (.01 appears to yield good results. The advantage of
the proposed method is that there is no need to perform a convergence study as is the case in
the finite difference method. Fig. 4 shows the sensitivity of the transient response with respect
to the stiffness parameter for the undamped softening system. The approximate sensitivities as obtained
from the central difference method using, 4¢=0.1 and 1.0, are also presented in that Figure.
The step size appears to have limited effect on the sensitivity of the response with respect to the
stiffness parameter.

200 ! l 20 »
=== Cwirs diieraceagprox. (3mw=08, M=q01) —— Fiblsdunatsn tmela=02
-ers Cortrd dITEr@ceappror. (ym=01, Ar=001) —-= Centr4 dffereceappran, (=10, A=001)

150 4 == Cmtrddlfermcesgproi. {sm=008, s=001) » 15 = Cantra dfferaceappro. (Ak=01, At=001) N
== Cortrs diferaceapprok. {Am=001, At=001) B T
~—— Cwitrd diferaceapprox. {ym=0005, A=001|

A

/|

Senaltivty (A

-150 1.5
[ 1 2 3 4 5 1] 1 2 3 4 5
Time{sec) Time({sac)
Fig. 3 Effect of step size on the response Fig. 4 Sensitivity of the response with
sensitivity with respect to mass . respect to stiffness

Nonlinear Van der Pol Equation

As a second example, consider a nonlinear Van der Pol equation (Shampine 1994)

WD+ e(2(D*—1)2u(D+ u(H=0
with initial conditions (0)=2.0 2(0)=0.0

For &>0, all non-trivial solutions converge to a limit cycle, a periodic solution. So the exact
solution must oscillate between —2.0 and 2.0 in this example. Fig. 5 shows the approximate solution
in the case of £=5.0 with time steps of (.025, 0.0167 and 0.005 in the interval (0, 20). The
Legendre polynomials of the fourth degree are used as basis functions. The accuracy of the solutions
can be improved significantly by reducing the step size from Jt=0.025 to 0.005. Results from
the Runge-Kutta fourth-order method with a step size of 0.005 is also presented for comparison
purpose. Fig. 6 shows the response sensitivity with respect to ¢ along with the system response.

In Fig. 7, the sensitivity results obtained from the present analytic approach are compared
with those obtained using the central difference scheme. The result indicates that the peak values
of the response sensitivity increases with time.

@9
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25 l
—— Cantrd dPferace appres. {iwwl 1, 2090008)
EL O R b ot el - et
«— — Fhiedemmtsin ime{ =408}
15 4 .
g 10 e e
% i .‘
s
10 4 ~
-15 T
[ 5 10 18 x

Time{sec)

Fig.7 Comparison of the sensitivities with respect to ¢ between TFM and CDM
Ci )+ e(u(: - 1) () + u(H=0)

System with Nonlinear Damping and Cubic Nonlinearity

The proposed method is first applied to a single-degree-of-freedom system, presented in Kapania
and Park (1997) of the form

WD+ au( D+ au(DP+ ayu( D+ a,u(H*=0, 0< ¢ 530 (30)
w h e r e
u(0")=0.0 2(0*)=5.0
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and the following numerical values are given for system parameters
a;=25.0, a,=2.5, a3=1.0, a,=0.1

Here an impulse, as the forcing function, is applied. The impulse is simulated using the initial
conditions of zero displacement and an initial velocity of (0).

Using the time finite element method based on the bilinear formulation, the second-order
sensitivity equations are derived for the above equation. For the finite element discretization, the
domain, 0¢ ¢ =30, is divided into three and six hundred elements of equal time steps of 4t=0.1
and (.05, respectively. For all the cases studied, third-degree Legendre polynomials were used as
basis functions in the calculation for the hierarchic approximations. The adoption of hierarchical
basis functions (Park and Kapania 1998) will enable the system matrices to be nearly diagonal
and hence imply better conditioning than those with standard ones.

oo a0z

—=— 1,F. M. (A1=0,1} —— TFM. {at=0.0)
Centiat-dittatence lormula Finfte-ditfarence formuta
{81=0,05. 48,20.25, 41,%0.025)

{81=0.08, Aw,»0.25)

oo 4

om0 -

?
——

aos

oo

00008
0005

Second-Order Sensitivity (Pule )
Second-Orcer Sensitivity(ufe 2a)

RTUTE

oms v T v 00020 T +
2 "» 2 By
Time{sec) Tima(sec)

Fig. 8 Second-order response sensitivity Fig. 9 Second-order response sensitivity

with respect to ¢, with respect to ¢, and a,

Fig. 8 shows the second-order sensitivity with respect to a,. For comparison, the finite-difference
methods used to verify the results for the response sensitivities. The sensitivities were obtained
in two steps: At first, the responses were calculated using Newmark A= 1/4 method with a parameter,
a,, a 1% positively and negatively perturbed values from its nominal one while holding the other
parameters constant. Then the sensitivity analysis was carried out using a finite-difference scheme.
Fig. 9 shows the second-order sensitivity of transient response to system parameters o, and a,.
Also, the results show the interactions between parameters. In the same way, we may easily obtain
the sensitivity results for the remaining system parameters.

The results obtained from the proposed method are not dependent upon the parameter step
size while the results from the finite-difference approximation are very sensitive to the values of
the parameter step size used. This is caused by the two sources of error: truncation and condition
eITorS.

Two-degree-of-freedom system having cubic nonlinearities

As a second example, a two-degree-of-freedom system having cubic nonlinearities, associated
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with many physical systems such as the vibration of strings, beams and plates, and presented by
Nayfeh and Mook (1979), is considered.

Uy =— Wy — 2ty — 0118 — @y — ayuy U — a4

iy =— Wiy — 2yty— aguy — aglbuy— ayuyi— agily 0< ¢ <30
with initial conditions

n

2 (0) = 1.5 % (0>=0.0
u,(0) =—1.0 %,(0)>=0.0
and the following values of system parameters
?=25.0, #,=0.35, ¢=50 =05 a=0.25, a=3.0
=170, #,=0.25, a,=2.5, a;=0.75 a;=0.2, a3=5.0

Note the nonzero initial values in displacements for the problem. For the time finite element
formulation the domain with a range of time 0< ¢ <30 is divided into six hundred elements of
equal time steps of 4t=0.05. Once again, third-degree Legendre polynomials were used as basis
functions in the response and sensitivity calculations.

TFM. ( a1=0.08)

: o Fimie-ditterence lomue
P e (41n0.005, An 1 ~0.03)
=~ Finle-diiterence termuls
(41+0.001. an,=0.05)

41-0.001. & ,-0.05)

Sacond-Order Sensiivity ('u /on )
-

Second-Order Sensitivity &'y w,*)
- -

4 T — T T - T T ™ T
° . 2 " 2 » . . L] » » »

Timelsec) Time(sec)

Fig. 10 Second-order response Flg. 11 Second-order  response
sensitivity with respect to 1, in the case sensitivity with respect to 11; in the case
of u of u;

Plots of the second-order sensitivities with respect to u, of the two responses, u, and u,,
are presented in Figs. 10 and 11, respectively. Note that the proposed method used ten to twenty
times larger time step than the one used in finite-difference approximations. So it is easily seen
that the proposed method works very effectively for the example. Note further that the comparison
of Figs. 10 and 11 shows the parameter p, impacts the response x, more than it does u,.

Summary and conclusion

The bilinear formulation is extended to solve nonlinear transient problems. This method is
easily extended to the time-finite-element formulation for the initial value problems by adopting
a constraint on the test functions, »(7Ty)#0 and (T, =0. The bilinear formulation can be proved
to be a convergent method, provided that the formulation has appropriate constraint on the test
functions. The use of a Lagrange multiplier method for applying the constraint »( 7)) =0 eliminates
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various numerical difficulties faced in earlier implementation of the method. Throughout this paper,
Legendre polynomials are used as basis functions. Although not presented here, results, in some
cases, were also obtained using other polynomials such as Chebyshev, Hermite, and Integral form
of Legendre polynomials and were found to be almost identical to those obtained using Legendre
polynomials. An advantage of the use of the orthogonal functions as basis functions is that the
resulting “stiffness matrix” is numerically well behaved. Also, it is convenient to use hierarchical
form (Zienkiewicz and Morgan 1983) of basis functions since it allows additional higher order basis
functions within elements without changing the mesh and without removing basis functions that
are already in use. As a result, one need not calculate the entire matrix anew when higher-order
basis functions are added to improve the accuracy of the approximation. The present approach is
thus ideal for adaptive schemes. By using a time finite element formulation, not only the transient
responses but also first- and second-order sensitivities of the transient response are calculated easily
(by performing a direct differentiation of the resulting algebraic equations). An advantage of the
present approach over the central difference approach is that one does not need to perform a convergence
study to select an appropriate step size for obtaining the sensitivities. The numerical results for
the presented examples show very good agreement between the results obtained using the present
approach and those available either exactly or obtained from central difference approximations. Based
on the results presented here, the proposed method appears to be a good choice for calculating
both the transient response and its sensitivity with respect to various system parameters for linear
and nonlinear, and damped and undamped systems.
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