Temporal Pattern Mining of Moving Objects for Location based Services

위치 기반 서비스를 위한 이동 객체의 시간 패턴 탐사 기법

  • Lee, Jun-Uk (Dept. of Computer Engineering, Chungbuk National University) ;
  • Baek, Ok-Hyeon (Agency for Defense Development) ;
  • Ryu, Geun-Ho (Dept. of Electrical Elecronic Computer Engineering, Chungbuk National University)
  • 이준욱 (충북대학교 컴퓨터과학과) ;
  • 백옥현 (국방과학연구소) ;
  • 류근호 (충북대학교 전기전자 및 컴퓨터공학부)
  • Published : 2002.10.01

Abstract

LBS(Location Based Services) provide the location-based information to its mobile users. The primary functionality of these services is to provide useful information to its users at a minimum cost of resources. The functionality can be implemented through data mining techniques. However, conventional data mining researches have not been considered spatial and temporal aspects of data simultaneously. Therefore, these techniques are inappropriate to apply on the objects of LBS, which change spatial attributes over time. In this paper, we propose a new data mining technique for identifying the temporal patterns from the series of the locations of moving objects that have both temporal and spatial dimension. We use a spatial operation of contains to generalize the location of moving point and apply time constraints between the locations of a moving object to make a valid moving sequence. Finally, the spatio-temporal technique proposed in this paper is very practical approach in not only providing more useful knowledge to LBS, but also improving the quality of the services.

위치 기반 서비스는 이동중인 사용자에게 위치와 관련된 정보를 제공한다. 최소한의 자원으로 사용자에게 유용한 정보를 개인화하여 제공하는 것은 위치 기반 서비스가 가져야 할 필수적인 기능이다. 이 기능은 데이타 마이닝을 통해 실현될 수 있다. 하지만 기존의 데이터 마이닝 연구는 시간 및 공간 속성을 동시에 고려하고 있지 않다. 따라서 시간에 따라 공간 위치 속성이 변경되는 특성을 갖는 위치 기반 서비스의 대상에는 적절하지 않다. 이 논문에서는 시간 및 공간 속성을 가지는 이동 객체의 위치 데이타로부터 유용한 시간 패턴을 탐사하기 위한 새로운 데이타 마이닝 기법을 제안하였다. 평면 상에서 좌표로 표현되는 이동 객체의 위치 정보를 일반화하기 위하여 contains와 같은 공간 연산을 사용하였다. 또한 이동 패턴 탐사 시 실제 유효한 시퀀스를 만들기 위해 객체의 위치 사이에 시간 제약조건을 적용하였다. 이렇게 생성된 이동 객체 위치의 시퀀스로부터 빈발 이동 시퀀스를 구하여 시간 패턴을 생성하였다. 제안한 기법은 기존과는 다른 시, 공간적 접근을 취함으로써 시간과 공간 의미가 중요시되는 위치 기반 서비스에 적합한 새로운 유형의 지식을 제공할 수 있다.

Keywords

References

  1. 김욱, 지규인, 이장규, '위치 기반 무선 인터넷 서비스', Telecommunications Review, 제10권, 제6호, pp.1260-1269, 2000
  2. M. N. Garofalakis, R. Rastogi, and K. Shim, 'SPIRIT : Sequential Pattern Mining with Regular Expression Constraints,' Proceedings of the 25th International Conference on Very Large Datbases, 1999
  3. O. Wolfson, A. P. Sistla, B. Xu, J, Zhou, and S. Chamberlain, 'DOMINO : Databases fOr MovlNg Objects tracking,' Proceedings of the ACM-SIGMOD International Conference on Management of Data, pp.547-549, 1999 https://doi.org/10.1145/304182.304572
  4. 류근호, 이준욱, 이용준, 'eCRM을 위한 시간 데이타 마이닝 기술', 한국 정보과학회 데이타베이스연구회지, 제17권, 제1호, 2001
  5. 이용준, 서성보, 류근호, 김혜규, '시간간격을 고려한 시간관계 규칙 탐사 기법', 한국정보과학회 논문지, 제28권, 제 3호, pp.301-314, 2001
  6. 안병익 'LBS기술동향과 전망 - LBS 구조 및 구성', 한국지리정보, 10월호, pp.52-56, 2001
  7. J.S. Song,Y. J. Lee, and K. H. Ryu, 'Discovering Temporal Relation Rules from Interval Data,' submitted to the ETRI Journal, 2001
  8. R. Agrawal and R. Srikant, 'Mining Sequential Patters,' Proceedings of the 11 th International Conference on Data Engineering, pp.3-14, 1995 https://doi.org/10.1109/ICDE.1995.380415
  9. R. Srikant and R. Agrawal, 'Mining Sequential Patterns:Generalizations and Performance Improvements,' International Conference on Extending Database Technology, Springer-Verlag, 1996 https://doi.org/10.1007/BFb0014140
  10. M.-S. Chen, J. S. Park, and P. S. Yu, 'Efficient Data Mining for Path Traversal Patterns,' IEEE Transactions on Knowledge and Data Engineering, Vol.10, No.2, pp. 209-221, 1998 https://doi.org/10.1109/69.683753
  11. J, Borges, M. Levene, 'A Fine Grained Heuristic to Capture Web Navigation Patterns,' SIGKDD Explorations, Vol.2, No.1, pp.40-50, 2000 https://doi.org/10.1145/360402.360416
  12. J. Pei, J, Han, B. Mortazavi-Asl and H. Zhu, 'Mining Access Patterns Efficiently from Web Logs,' Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining( PAKDD), 2000 https://doi.org/10.1007/3-540-45571-X_47
  13. R. Agrawal and R. Srikant, 'Fast Algorithms for Mining Association Rules,' Proceedings of the 20th International Conference on Very Large Databases, pp. 487-499, Santiago, Chile, 1994
  14. H. Mannila, H. Toivonen, and A. I. Verkamo, 'Discovery of Frequent Episodes in Event Sequences,' Data Mining and Knowledge Discovery, Vol.1, No.3, pp.259-289, 1997 https://doi.org/10.1023/A:1009748302351
  15. J. Han, G. Dong, and Y. Yin, 'Efficient Mining of Partial Periodic Patterns in Time Series Database,' Proceedings of the 11th International Conference on Data Engineering, 1999 https://doi.org/10.1109/ICDE.1999.754913
  16. B. Ozden., S. Ramaswamy, and A. Silberschatz, 'Cyclic Association Rules,' Proceedings of the 14th International Conference on Data Engineering, 1998 https://doi.org/10.1109/ICDE.1998.655804
  17. P.S. Kam and A. Fu, 'Discovering Temporal Patterns for Interval-Based Events,' Proceedings of the 2nd International Conference on Data Warehousing and Knowledge Discovery, (Dawak), Springer Verlag, LNCS, London, UK, 4-6 Sept, 2000
  18. X. Chen, I. Petrounias, and H. Heathfield, 'Discovering Temporal Association Rules in Temporal Databases,' Proceedings of the International Workshop on Issues and Applications of Database Technology(IADT'98), pp.312-319, 1998
  19. J. F. Allen, 'Maintaining Knowledge about Temporal Intervals,' Communication of the Association of Computing Machinery, Vol.26, No.11, 1983 https://doi.org/10.1145/182.358434
  20. T. Abraham and J. F. Roddick, 'Discovering Meta-rules in Mining Temporal and Spatio-temporal data,' Proceedings of the International Database Workshop, Data Mining, Data Warehousing and Client/Server Databases, (IDW'97), pp.30-41, 1997
  21. E. Tsoukatos and D. Gunopoulos, 'Efficient Mining of SpatioTemporal Patterns,' Proceedings of the 7th International Symposium on Spatial and Temporal Databases(SSTD), pp.425-442, 2001
  22. Seong Seung Park, Yun Ae Ahn, and Keun Ho Ryu, 'Moving Objects Spatiotemporal Reasoning Model for Battlefield Analysis,' In Proc. of Military, Government and Aerospace Simulation part of ASTC2001, pp.108-113, Apr., 2001
  23. 안윤애, 류근호, '이동 객체의 불확실한 위치 정보 관리', 충북대학교 컴퓨터정보통신 연구, 제 9권, 제 1호, pp.81-91, 2001
  24. M. Erwig, R.H. Guting, M. Schneider, and M. Vazirgiannis, 'Spatio-Temporal Data Types : An Approach to Modeling and Querying Moving Objects in Databases,' GeoInformation, Vol.3, No.3, pp. 269-296, 1999 https://doi.org/10.1023/A:1009805532638
  25. L. Forlizzi, R. H. Guting, E. Nardelli and M. Schneider, 'A Data Model and Data Structures for Moving Objects Databases,' Proceedings of the ACM-SIGMOD International Conference on Management of Data, pp.319-330, 2000 https://doi.org/10.1145/342009.335426
  26. R. H. Guting, M. H. Bohlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider, and M. Vazirgiannis, 'A Foundation for Representing and Querying Moving Objects,' ACM Transactions on Database Systems, 2000 https://doi.org/10.1145/352958.352963
  27. InBae Oh, YoonAe Ahn, EungJae Lee, KeunHo Ryu, HongGi Kim, 'Prediction of Uncertain Moving Object Location,' In Proc. of Int. Conf. on East-Asian Language Processing and Internet Information Technology 2002 (EALPIIT2002 HANOI), 2002
  28. A. Guttman, R-trees: a Dynamic Index Structure for Spatial Searching,' In Preceedings of the ACM SIGMOD Conference on the Management of Data, pp.47-57, 1984 https://doi.org/10.1145/602259.602266
  29. N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger, 'The $R^*-tree$: An Efficient and Robust Access Method for Points and Rectangles,' ACM SIGMOD Conference, pp.322-331, 1990 https://doi.org/10.1145/93597.98741
  30. D. Pfoser, Y. Theodoridis, and C. S. Jensen, 'Indexing Trajectories of Moving Point Objects,' CHOROCHRONOS Technical Report CH-99-03, October, 1999
  31. CHOROCHRONOS Technical Report CH-00-03 Novel Approaches in Query Processing for Moving Objects D.Pfoser;C.S.Jensen;Y.Theodoridis
  32. D. Pfoser, C. S. Jensen, and Y. Theodoridis, 'Novel Approaches in Query Processing for Moving Objects,' CHOROCHRONOS Technical Report CH-00-3, February, 2000
  33. R. J. Bayardo Jr., 'Efficiently Mining Long Patterns from Databases,' Proceedings of the ACM-SIGMOD International Conference on Management of Data, pp. 85-93, 1998 https://doi.org/10.1145/276304.276313