Hydrothermal Alteration and Its Cenetic Implication in the Casado Volcanic-hosted Epithermal Cold-Silver Deposit: Use in Exploration

가사도 화산성 천열수 금은광상의 열수변질대 분포 및 성인: 탐사에의 적용

  • Published : 2002.09.01

Abstract

The gold-silver deposits in the Casado district were formed in the sheeted and stockwork quartz veins which fill the fault fractures in volcanic rocks. K-Ar dating of alteration sericite (about 70 Ma) indicates a Late Cretaceous age for ore mineralization. These veins are composed of quartz, adularia, carbonate, and minor of pyrite, sphalerite, chalcopyrite, galena, Ag-sulfosalts (argentite, pearceite, Ag-As-Sb-S system), and electrum. These veins are characterized by chalcedonic, comb, crustiform and feathery textures. Based on the hydrothermally altered mineral assemblages, regional alteration zoning associated with mineralization in the Gasado district is defined as four zones; advanced argillic (kaolin mineral-alunite-quartz), argillic (kaolin mineral-quartz), phyllic (quartz-sericite-pyrite) and propylitic (chlorite-carbonate-quartz-feldspar-pyroxene) zone. Phyllic and propylitic zones is distributed over the study area. However, advanced argillic zone is restricted to the shallow surface of the Lighthouse vein. Compositions of electrum ranges from 14.6 to 53.7 atomic % Au, and the depositional condition for mineralization are estimated in terms of both temperature and sulfur fugacity: T=245。$~285^{\circ}C$, logf $s_2$=$10^{-10}$ ~ $10^{-12}$ Fluid inclusion and stable isotope data show that the auriferous fluids were mixed with cool and dilute (158。~253$^{\circ}C$ and 0.9~3.4 equiv. wt. % NaCl) meteoric water ($\delta^{18}$ $O_{water}$=-10.1~8.0$\textperthousand$, $\delta$D=-68~64$\textperthousand$). These results harmonize with the hot-spring type of the low-sulfidation epithermal deposit model, and strongly suggest that Au-Ag mineralization in the Gasado district was formed in low-sulfidation alteration type environment at near paleo-surface.

가사도 지역 금은광상은 후기 백악기 화산활동에 의해 형성된 화산쇄설암을 모암으로 하여 판상(sheeted) 및 망상(stockwork) 석영맥으로 산출되며, 빗살, 호상 및 깃털조직 등을 보이고 있다 금은광화작용과 관련된 열수변질대는 광물 조합에 따라 고점토대(딕카이트-명반석-석영), 점토대(딕카이트-석영), 견운모대(석영-견운모-황철석) 및 프로필리틱대(녹니석-탄산염광물-석 영-장석-휘석)로 구분된다 고점토대는 등대맥 최상부인 노인봉을 중심으로 분포하고 있으며, 그 외각부에서 견운모대 및 프로필리틱대가 산출되고 있다. 석영맥은 석영, 옥수질석영, 아듈라리아, 탄산염광물등의 맥석광물과 함께 미립의 황철석, 섬아연석, 황동석, 방연석, 함은광물, 에렉트럼 등 광석광물로 구성되며, 에렉트럼의 금함량은 14.6~53.7 atomic % Au이다. 유체포유물 및 에렉트럼-섬아연석 지질온도계로부터 추정된 광화작용 온도는 $158^{\circ}C$~285$^{\circ}C$범위로 전형적인 천열수광응의 온도범위를 보이고 있으며, 산소.수소 안정동위원소 연구 결과($\delta^{18}$ /$O_{water}$ =-10.1~8.0$\textperthousand$, $\delta$D=-68~64$\textperthousand$) 동위원소 교환이 적게 진행된 천수로부터 유래된 광화유체로 추정된다. 이러한 변질대의 분포특성, 열수유체의 기원 및 생성환경을 종합해 볼 때, 현재 지표에 노출된 가사도 지역의 광화대는 온천형 저유황성 천열수 금은광상의 최상부에 해당하는 것으로 추정된다.

Keywords

References

  1. 강흥석(2000) 가사도지구 연구조사 보고서. 대한광업진흥공사, 17.
  2. 고상모, 박중권, 이형재 (1992) 가사도 변질대 연구: 화산원 천열수성 광상탐사 및 모델 정립(III). 과학 기술처, 119-130.
  3. 김상욱, 윤윤영 (1971) 한국지질도(1:50,000), 진도. 지산 도폭 및 설명서, 국립지질조사소, 13-15.
  4. 김창성, 최선규, 박상준, 김유동, 지세정 (2002) 열수 변질대 탐사를 위한 단파장 적외선 분광법의 응용. 한국자원공학회지, 39, 231-241.
  5. 이인우, 김량희, 김문섭, 김승태 (2000) 정밀조사보고서(금: 진도지구). 대한광업진흥공사, 8-11.
  6. 이인우, 이희숙, 유영준, 정연호 (2001) 정밀조사보고서(금: 해남지구). 정밀조사보고서(금속광:해남, 음성, 포천지구). 정밀조사보고서(금속광: 해남, 음성, 포천지구), 대한광업진흥공사, 39-49.
  7. 조한익, 문희수 (1978) 한국의명반석 광상. 자원개발연구소, 38-54.
  8. Barton, P.B., Jr. and Skinner, B.J. (1979) Sulfide mineral stabilities. In: Barnes, H.L. (ed.),Geochemistry of Hydrothermal Ore Deposits (2nd Ed.). Willey , New York, 278 -403.
  9. Barton P.B.Jr. and To ulmin P. ( 1964) The electrumtarnish method for the determination of the fugacity of sulfur in laboratory sulfide systems. Geochim. et Cosmochim. Acta 28, 6 19-640.
  10. Buchanan, L.J. (1981) Precious metal deposits associated wit h volcanic environments in the southwest. In: Dickinson, W.R. and Payne, W.O. (eds.), Relations of Tectonics to Ore Deposits in the Southern Cordillera. Arizo na Geologica l Society Digest, 14, 237-2 62.
  11. Corbett, G.J. and Leach, T.M. (1998) South west Pacific rim go ld-copper sys tems: structure, alteration, and mineralization. Society of Economic Geologists, Special publication. Vol. 6. 69-82 .
  12. Cooke, D.R. and Simmons. S.F (2000) Characteristics and genes is of epithermal gold deposits. Reviews in Economic Geology, Society of Economic Geologists. Vol. 13, 22 1-244.
  13. Haynes, E.M. (1985) Determination of fluid inclusion compositions by sequential freezing. Econ . Geol., 80, 1436-14 39.
  14. Hedenquist, J.W. (1991) Boiling and dilution in the shallow portion of the Waiotapu geothermal system, New Zealand. Geochim. et Cosmochim. Acta 55. 2753-2765.
  15. Hedenqui st, J.W., Antonio, A.R., and Eliseo, G.U. (2000) Explorat ion for epithermal gold deposit. Reviews in Economic Geology, Society of Economic Geologists, Vol. 13, 245-277.
  16. Hey, M.T. (1954) A new review of chlorites. Mineral. Mag., 30, 27 8-292.
  17. Kim, 1.J . and Keisuke, N. (1992) K-Ar age s of the hydrotherma l clay deposits and the surrounding igneous rocks in Southwest Korea. Jour. Petrol. Soc . Korea, I , 58- 70.
  18. Koh, S.M., Tetsu ichi, T., Kim, M.Y., Kazuki, N.,Hong, S.S., and Sadahisa, S. (2000) Geological and geochemical characteristics of the hydrothermal clay alteration in South Korea. Resource Geology , 50. 229-242.
  19. Matsuhisa, Y., Go ldsmith, J.R ., and Clayton, R.N. ( 1979) Oxygen isotopic fractionation in the system quart z-a lbite-anorthite-water. In: Berger, B.R., and Bethke, M. (eds.), Review in Economic geology ; Geology and Geochemistry of Epithermal Systems. Society of Economic Geologists. 2, 99-128.
  20. Potter, R.W. Ill; Clynne, M.A., and Brown, K.L. (1978) Freezing point depression of aqueous sodium chloride so lutions. Econ. Geol., 73, 284-285.
  21. Ruperto, V.L., R.E. Stevens. and M.B. Norman (1964) Staining of plagioclase feldspar and other mineral s wit h F., D., and C. Red No.2. U.S. Geo l. Seuv. Prof. Paper 50 I 13, 13 152- 13 153. In: Hutchison, C.S. (ed.), ( 1974) Laboratory Handbook of Petrographic Techniques. John Wiley & Sons. Inc., New York, 16-20.
  22. Scott, S.D. and Barn es, 1-1. L. (1971) Spha lerite geothermometry and geobarometry . Econ . Geo l., 66, 653-669.
  23. Shelton, K.L.. So, C.S ., Haeussler. G.T.• Chi, S.J., and Lee, K.Y. (1990) Geochemical studies of the Tongyoung gold-silver deposits, Republic of Korea: Evidence of meteor ic water dominance in a Te-bea ring epithermal system. Econ. Geol., 85, 1114-11 32.
  24. Shikazono, N. (1985) A comparison of temperatures estimated from electrum-sphalerite-pyrite-argentite assemblage and fill ing temperatures of fluid inclusions from epithermal Au-Ag vei n deposits in Japan . Econ . Gco l., 80, 141 5-1424.
  25. Shikazono, N. ( 1986) Ag/Au total production ratio and Au-Ag minerals from vein-type and disseminated-type deposits in Japan . Mining Geo l.,36, 411-424.
  26. Shikazono, N. and Shimizu , M. (1987) The Ag/Au ratio of native gold and electrum and geochemical environment of gold vein de posits in Japan. Mineral. Deposita 22, 309 -3 14.
  27. Stoffregen , R.E. and Cygan, G.L. (1989) An ex perimental study of Na-K exchange between alunite and aqueous sulfate solutions. Am. Mineral., 75, 209-220.
  28. Vcldc, B. (1992) Introduction to clay minerals, Chapman & Hall, London, 71.